Pathways through cingulate, neo-and entorhinal cortices mediate atropine-resistant hippocampal rhythmical slow activity

Rats prepared with a lesion separating the entorhinal cortex from the neocortex and cingulate cortex displayed apparently normal hippocampal rhythmical slow activity (RSA) with a frequency of 6–12 Hz in both CA1 and dentate gyrus during Type 1 behavior (locomotion, head movements, changes in posture...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 1985-11, Vol.347 (1), p.58-73
Hauptverfasser: Vanderwolf, C.H., Leung, L.-W.S., Cooley, R.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rats prepared with a lesion separating the entorhinal cortex from the neocortex and cingulate cortex displayed apparently normal hippocampal rhythmical slow activity (RSA) with a frequency of 6–12 Hz in both CA1 and dentate gyrus during Type 1 behavior (locomotion, head movements, changes in posture). Variations in the commissural average evoked potential (AEP) and increased power in the 30–100 Hz range (fast waves) also correlated with Type 1 behavior. Urethane did not abolish the RSA. However, systemic administration of atropinic drugs eliminated all RSA and eliminated or attenuated the Type 1 behavior-related variations in the AEP and fast waves. Thus, the normally present atropine-resistant RSA was eliminated by the cortical lesion while atropine-sensitive RSA remained intact. Removal of cingulate cortex alone was partially effective in suppressing atropine-resistant RSA but a lesion of the neocortex only, sparing cingulate cortex, had a minimal effect on it. Lesions of the amygdala, the anterior or medial thalamus or the cerebellum had little or no effect on atropine-resistant RSA. Previous work has shown that lesions of the entorhinal cortex or lateral hypothalamus eliminate atropine-resistant RSA. We suggest that atropine-resistant RSA is mediated by a somewhat diffuse pathway which traverses the hypothalamus, cingulate cortex, and neocortex before reaching the hippocampus via the entorhinal cortex.
ISSN:0006-8993
1872-6240
DOI:10.1016/0006-8993(85)90889-3