Na+-dependent transport of basic, zwitterionic, and bicyclic amino acids by a broad-scope system in mouse blastocysts
Mouse blastocysts which had been activated from diapause in utero appeared to take up amino acids via a Na+-dependent transport system with novel characteristics. In contrast to other cell types, uptake of 3-aminoendobicyclo [3,2,1]octane-3-carboxylic acid (BCO) by blastocysts was largely Na+ depend...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1985-10, Vol.260 (22), p.12118-12123 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mouse blastocysts which had been activated from diapause in utero appeared to take up amino acids via a Na+-dependent transport system with novel characteristics. In contrast to other cell types, uptake of 3-aminoendobicyclo [3,2,1]octane-3-carboxylic acid (BCO) by blastocysts was largely Na+ dependent. Moreover, L-alanine and BCO met standard criteria for mutual competitive inhibition of the Na+-dependent transport of each other. The Ki for each of these amino acids as an inhibitor of transport of the other had a value similar to the value of its Km for transport. In addition, both 2-aminoendobicyclo [2,2,1]heptane-2-carboxylic acid (Ki approximately 1.0 mM) and L-valine (Ki approximately 0.10 mM) appeared to inhibit Na+-dependent transport of alanine and BCO competitively. Finally, alanine and L-lysine appeared to compete for the same Na+-dependent transport sites in blastocysts. For these reasons, we conclude that lysine, alanine, and BCO are transported by a common Na+-dependent system in blastocysts. In addition, the apparent interaction of the system with other basic amino acids, such as 1-dimethylpiperidine-4-amino-4-carboxylic acid, which has a nondissociable positive charge on its side chain, and L-arginine and L-homoarginine, whose cationic forms are highly predominant at neutral pH, suggests that the cationic forms of basic amino acids are transported by the wide-scope system. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/S0021-9258(17)38994-9 |