Demonstration of transthyretin mRNA in the brain and other extrahepatic tissues in the rat

Studies were conducted to ascertain if transthyretin mRNA was present in extrahepatic tissues of the rat. A trnasthyretin cDNA clone was isolated from a lambda gt11 human liver cDNA library by antibody screening and its identity was confirmed by nucleotide sequence analysis. This transthyretin cDNA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1985-09, Vol.260 (21), p.11793-11798
Hauptverfasser: Soprano, D R, Herbert, J, Soprano, K J, Schon, E A, Goodman, D S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studies were conducted to ascertain if transthyretin mRNA was present in extrahepatic tissues of the rat. A trnasthyretin cDNA clone was isolated from a lambda gt11 human liver cDNA library by antibody screening and its identity was confirmed by nucleotide sequence analysis. This transthyretin cDNA clone was used to survey poly(A+) RNA isolated from 12 different rat tissues for transthyretin mRNA by Northern blot analysis. The liver contained the highest level of transthyretin mRNA and this level was not altered by the vitamin A status of the rat. A significant amount of transthyretin mRNA was found in the brain (30% of the level of the liver) which was localized in specific regions of the brain. In addition, detectable levels of transthyretin mRNA (1% to 2% of that of the liver) were observed in the stomach, heart, skeletal muscle, and spleen. Translation of brain poly(A+) RNA in rabbit reticulocyte lysates and immunoprecipitation of the translation products with anti-transthyretin antiserum resulted in a protein band of the same size as liver pre-transthyretin. Liver pre-transthyretin was processed by the cotranslational addition of dog pancreas microsomal membranes to a protein that migrated coincidentally with monomeric serum transthyretin. These data suggest that transthyretin in the brain and the cerebrospinal fluid results from de novo synthesis and that transthyretin may play a significant physiological function, as yet unknown, within the nervous system.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(17)39100-7