Glutamine-dependent nitrogen transfer in Escherichia coli asparagine synthetase B. Searching for the catalytic triad

The mechanism of nitrogen transfer in glutamine-dependent amidotransferases remains to be unambiguously established. We now report the overexpression, purification, and kinetic characterization of both the glutamine- and ammonia-dependent activities of Escherichia coli asparagine synthetase B (AS-B)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1994-03, Vol.269 (10), p.7450-7457
Hauptverfasser: BOEHLEIN, S. K, RICHARDS, N. G. J, SCHUSTER, S. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mechanism of nitrogen transfer in glutamine-dependent amidotransferases remains to be unambiguously established. We now report the overexpression, purification, and kinetic characterization of both the glutamine- and ammonia-dependent activities of Escherichia coli asparagine synthetase B (AS-B) and a series of mutants. In common with other members of the purF family of amidotransferases, the recombinant enzyme possesses an NH2-terminal cysteine residue. Replacement of Cys-1 by either alanine or serine results in a loss of glutaminase and glutamine-dependent activity, without out any significant effect upon ammonia-dependent asparagine synthesis. As previously observed for human AS (Sheng, S., Moraga-Amador, D., Van Heeke, G., Allison, R. D., Richards, N. G. J., and Schuster, S. M. (1993) J. Biol. Chem. 268, 16771-16780), glutamine is an inhibitor of the ammonia-dependent reaction catalyzed by both the Cys-1-->Ala (C1A) and Cys-1-->Ser (C1S) mutants of AS-B. In the case of C1A, the inhibition pattern suggests that an abortive complex is formed. This is consistent with a recent proposal implicating the formation of an imide intermediate in the nitrogen transfer reaction (Richards, N. G. J., and Schuster, S. M. (1992) FEBS Lett. 313, 98-102). In contrast, glutamine appears to be only a competitive inhibitor of the ammonia-dependent activity of C1S. Cys-1 does not appear to be required for glutamine binding. Replacement of Asp-33 by either asparagine or glutamic acid has little effect on the kinetic properties of the mutant enzymes when compared to wild-type AS-B. Cys-1 and Asp-33 are cognate to residues Cys-1 and Asp-29 in glutamine phosphoribosylpyrophosphate amidotransferase which have been proposed to be members of a catalytic triad responsible for mediating nitrogen transfer in this enzyme (Mei, B., and Zalkin, H. (1989) J. Biol. Chem. 264, 16613-16619). In the case of AS-B, although Cys-1 is essential for glutamine-dependent activity, Asp-33 does not appear to participate in mediating nitrogen transfer. In an effort to locate other residues which might form part of a "catalytic triad" in the glutamine amidotransferase domain of AS-B, we have expressed and characterized mutant proteins in which His-29 and His-80, which are conserved within the glutamine amidotransferase domain of purF amidotransferases, are replaced by alanine (H29A and H80A).
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(17)37307-6