Integrity of the permeability barrier is crucial for maintenance of the epidermal calcium gradient
Summary Prior studies have demonstrated a Ca2+ gradient within the epidermis, with the highest concentration in the outer nucleated layers, disappearance of the Ca2+ gradient when the permeability barrier is acutely disrupted, and reappearance of the Ca2+ gradient in parallel with barrier repair, an...
Gespeichert in:
Veröffentlicht in: | British journal of dermatology (1951) 1994-02, Vol.130 (2), p.139-147 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
Prior studies have demonstrated a Ca2+ gradient within the epidermis, with the highest concentration in the outer nucleated layers, disappearance of the Ca2+ gradient when the permeability barrier is acutely disrupted, and reappearance of the Ca2+ gradient in parallel with barrier repair, and disruption of the gradient in psoriasis. These observations suggest that integrity of the permeability barrier may maintain the epidermal Ca2+ gradient. To determine further whether a functional barrier is crucial for maintaining the Ca2+ gradient, we examined Ca2+ distribution by ion‐capture cytochemistry in essential‐fatty‐acid‐deficient (EFAD) and topical‐lovastatin‐treated mice, which display a chronic barrier abnormality. In both models, loss of the Ca2+ gradient occurred due to increased cytosolic Ca2+ in the lower epidermis, which normally displays a paucity of Ca2+. Moreover, artificial barrier restoration for 48 h with a water vapour‐impermeable wrap normalized the Ca2+distribution pattern. Acute barrier disruption also leads to the loss of the Ca2+ gradient, but in contrast with the chronic models, loss of the gradient was due to decreased Ca2+ in the upper epidermis. Occlusion with a vapour‐impermeable wrap blocked restoration of the Ca2+ gradient after acute barrier disruption. These results demonstrate that chronic barrier disruption increases Ca2+ in the epidermis, and blockade of water flux normalizes Ca2+ distribution, whereas acute barrier disruption leads to loss of Ca2+, and blockade of water flux prevents the return of Ca2+. We conclude: (i) that the epidermal Ca2+ reservoir is derived from the movement of fluids and Ca2+ across the basement membrane, and (ii) that the integrity of the permeability barrier maintains the epidermal Ca2+gradient. |
---|---|
ISSN: | 0007-0963 1365-2133 |
DOI: | 10.1111/j.1365-2133.1994.tb02892.x |