Evidence for overlapping active sites in a multifunctional enzyme: immunochemical and chemical modification studies on C1-tetrahydrofolate synthase from Saccharomyces cerevisiae

The relationship of the active sites which catalyze the three reactions in the trifunctional enzyme C1-tetrahydrofolate synthase (C1-THF synthase) from Saccharomyces cerevisiae has been examined with immunochemical and chemical modification techniques. Immunotitration of the enzyme with a polyclonal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1985-07, Vol.24 (14), p.3540-3547
Hauptverfasser: Appling, Dean R, Rabinowitz, Jesse C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The relationship of the active sites which catalyze the three reactions in the trifunctional enzyme C1-tetrahydrofolate synthase (C1-THF synthase) from Saccharomyces cerevisiae has been examined with immunochemical and chemical modification techniques. Immunotitration of the enzyme with a polyclonal antiserum resulted in identical inhibition curves for the dehydrogenase and cyclohydrolase activities which were distinctly different from the inhibition curve for the synthetase activity. During chemical modification with diethyl pyrocarbonate (DEPC), the three activities were inactivated at significantly different rates, indicating that at least three distinct essential residues are involved in the reaction with DEPC. The pH dependence of the reaction with DEPC was consistent with the modification of histidyl residues. Treatment of C1-THF synthase with N-ethylmaleimide (NEM) resulted in significant inactivation of only the dehydrogenase and cyclohydrolase activities, with the cyclohydrolase at least an order of magnitude more sensitive than the dehydrogenase. Inactivation of cyclohydrolase was biphasic at NEM concentrations above 0.1 mM, suggesting two essential cysteinyl residues were being modified. NADP+, a dehydrogenase substrate, protected both dehydrogenase and cyclohydrolase activities, but not synthetase activity, against inactivation by either reagent. Synthetase substrates had no protective ability. Pteroylpolyglutamates and p-aminobenzoic acid polyglutamates exhibited some protection of all three activities. The p-aminobenzoic acid polyglutamate series showed progressive protection with increasing chain length. These results are consistent with an overlapping site for the dehydrogenase and cyclohydrolase reactions, independent from the synthetase active site. Possible active-site configurations and the role of the polyglutamate tail in substrate binding are discussed.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00335a023