Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles
We have studied nineteen anhydrous chondritic interplanetary dust particles (IDPs) using analytical electron microscopy. We have determined a method for quantitative light element EDX analysis of small particles and have applied these techniques to a group of IDPs. Our results show that some IDPs ha...
Gespeichert in:
Veröffentlicht in: | Geochimica et cosmochimica acta 1993-04, Vol.57 (7), p.1551-1566 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have studied nineteen anhydrous chondritic interplanetary dust particles (IDPs) using analytical electron microscopy. We have determined a method for quantitative light element EDX analysis of small particles and have applied these techniques to a group of IDPs. Our results show that some IDPs have significantly higher bulk carbon abundances than do carbonaceous chondrites. We have also identified a relationship between carbon abundance and silicate mineralogy in our set of anhydrous IDPs. In general, these particles are dominated by pyroxene, olivine, or a subequal mixture of olivine and pyroxene. The pyroxene-dominated IDPs have a higher carbon abundance than those dominated by olivines. Members of the mixed mineralogy IDPs can be grouped with either the pyroxene- or olivine-dominated particles based on their carbon abundance. The high carbon, pyroxene-dominated particles have primitive mineralogies and bulk compositions which show strong similarities to cometary dust particles. We believe that the lower carbon, olivine-dominated IDPs are probably derived from asteroids. Based on carbon abundances, the mixed-mineralogy group represents particles derived from either comets or asteroids. We believe that the high carbon, pyroxene-rich anhydrous IDPs are the best candidates for cometary dust. |
---|---|
ISSN: | 0016-7037 1872-9533 |
DOI: | 10.1016/0016-7037(93)90012-L |