Antibodies specific for distinct Kv subunits unveil a heterooligomeric basis for subtypes of alpha-dendrotoxin-sensitive K+ channels in bovine brain
The authentic subunit compositions of neuronal K+ channels purified from bovine brain were analyzed using a monoclonal antibody (mAb 5), reactive exclusively with the Kv1.2 subunit of the latter and polyclonal antibodies specific for fusion proteins containing C-terminal regions of four mammalian Kv...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 1994-02, Vol.33 (7), p.1617-1623 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authentic subunit compositions of neuronal K+ channels purified from bovine brain were analyzed using a monoclonal antibody (mAb 5), reactive exclusively with the Kv1.2 subunit of the latter and polyclonal antibodies specific for fusion proteins containing C-terminal regions of four mammalian Kv proteins. Western blotting of the K+ channels isolated from several brain regions, employing the selective blocker alpha-dendrotoxin (alpha-DTX), revealed the presence in each of four different Kvs. Variable amounts of Kv1.1 and 1.4 subunits were observed in the K+ channels purified from cerebellum, corpus striatum, hippocampus, cerebral cortex, and brain stem; on the other hand, contents of Kv1.6 and 1.2 subunits appeared uniform throughout. Each Kv-specific antibody precipitated a different proportion (anti-Kv1.2 > 1.1 >> 1.6 > 1.4) of the channels detectable with radioiodinated alpha-DTX in every brain region, consistent with a widespread distribution of these oligomeric subtypes. Such heterooligomeric combinations were further documented by the lack of additivity upon their precipitation with a mixture of antibodies to Kv1.1 and Kv1.2; moreover, cross-blotting of the multimers precipitated by mAb 5 showed that they contain all four Kv proteins. Collectively, these findings demonstrate that subtypes of alpha-DTX-susceptible K+ channels are prevalent throughout mammalian brain which are composed of different Kv proteins assembled in complexes, shown previously to also contain auxiliary beta-subunits [Parcej, D. N., Scott, V. E. S., & Dolly, J.O. (1992) Biochemistry 31, 11084-11088]. |
---|---|
ISSN: | 0006-2960 |
DOI: | 10.1021/bi00173a001 |