The Domain Structure of Sigma 54 as Determined by Analysis of a Set of Deletion Mutants
Escherichia coli σ54 was analyzed by making a series of 16 internal deletions within its gene and analyzing the properties of the mutant proteins. All of the mutant proteins except one were strongly defective in a growth test that relied on σ54 function. Additional assays were applied to determine t...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 1994-02, Vol.236 (1), p.81-90 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 90 |
---|---|
container_issue | 1 |
container_start_page | 81 |
container_title | Journal of molecular biology |
container_volume | 236 |
creator | Wong, Cai'ne Tintut, Yin Gralla, Jay D. |
description | Escherichia coli σ54 was analyzed by making a series of 16 internal deletions within its gene and analyzing the properties of the mutant proteins. All of the mutant proteins except one were strongly defective in a growth test that relied on σ54 function. Additional assays were applied to determine the causes of these defects. The assays monitored the following properties; the level of protein expression; ability to bind to the -24 promoter element of the
glnAP2 promoter
in vivo; the ability to bind to the -12 promoter element
in vivo; ability to melt the promoter start site
in vivo; ability to bind the
Rhizobium meliloti nifH promoter
in vitro; and the ability to form a sigma 54-core RNA polymerase complex (Eσ54 holoenzyme)
in vitro. The analysis shows a modular structure in that certain regions of the protein predominate in contributing to each of these properties. A large carboxyl region of the protein is essential for promoter binding. A smaller amino-terminal segment is essential for DNA melting. An element essential for the forming the Eσ54 holoenzyme lies between these two regions. None of these domains resemble those of σ70 and this difference is discussed in view of the different transcription mechanisms directed by the two proteins. |
doi_str_mv | 10.1006/jmbi.1994.1120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76362770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002228368471120X</els_id><sourcerecordid>16926096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-2e58d6f2714464d3ba9eccbdf1962106df09a34d49ddd8c2abd6688dd0f18bbe3</originalsourceid><addsrcrecordid>eNqFkD1PHDEQhq0IBAdJmw7JBUq3x_jjvHaJuCQggSiOKKXltWcTo_0gthfp_j23uhNdRDUjvc-8Gj2EfGWwZADq6rlv4pIZI5eMcfhEFgy0qbQS-ogsADivuBbqlJzl_AwAKyH1CTnRDGrG6wX5_fQX6XrsXRzopqTJlykhHVu6iX96R1eSukzXWDD1ccBAmy29Hly3zTHPlKMbLPOyxg5LHAf6MBU3lPyZHLeuy_jlMM_Jrx_fn25uq_vHn3c31_eVF8aUiuNKB9XymkmpZBCNM-h9E1pmFGegQgvGCRmkCSFoz10TlNI6BGiZbhoU5-Tbvvcljf8mzMX2MXvsOjfgOGVbK6F4XcOHIFOGKzBqBy73oE9jzglb-5Ji79LWMrCzcjsrt7NyOyvfHVwcmqemx_COHxzv8stD7rJ3XZvc4GN-x4ThQsoZ03sMd7peIyabfcTBY4gJfbFhjP_74A1Gg5uv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16926096</pqid></control><display><type>article</type><title>The Domain Structure of Sigma 54 as Determined by Analysis of a Set of Deletion Mutants</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Wong, Cai'ne ; Tintut, Yin ; Gralla, Jay D.</creator><creatorcontrib>Wong, Cai'ne ; Tintut, Yin ; Gralla, Jay D.</creatorcontrib><description>Escherichia coli σ54 was analyzed by making a series of 16 internal deletions within its gene and analyzing the properties of the mutant proteins. All of the mutant proteins except one were strongly defective in a growth test that relied on σ54 function. Additional assays were applied to determine the causes of these defects. The assays monitored the following properties; the level of protein expression; ability to bind to the -24 promoter element of the
glnAP2 promoter
in vivo; the ability to bind to the -12 promoter element
in vivo; ability to melt the promoter start site
in vivo; ability to bind the
Rhizobium meliloti nifH promoter
in vitro; and the ability to form a sigma 54-core RNA polymerase complex (Eσ54 holoenzyme)
in vitro. The analysis shows a modular structure in that certain regions of the protein predominate in contributing to each of these properties. A large carboxyl region of the protein is essential for promoter binding. A smaller amino-terminal segment is essential for DNA melting. An element essential for the forming the Eσ54 holoenzyme lies between these two regions. None of these domains resemble those of σ70 and this difference is discussed in view of the different transcription mechanisms directed by the two proteins.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1006/jmbi.1994.1120</identifier><identifier>PMID: 8107127</identifier><identifier>CODEN: JMOBAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Bacterial Proteins - biosynthesis ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Biological and medical sciences ; DNA, Bacterial - metabolism ; DNA-Binding Proteins - metabolism ; DNA-Directed RNA Polymerases - metabolism ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins ; functional domains ; Fundamental and applied biological sciences. Psychology ; Genes, Bacterial ; Genetics ; Microbiology ; Nitrogen Fixation - genetics ; Nitrogenase - chemistry ; Nitrogenase - genetics ; Nitrogenase - metabolism ; Oxidoreductases ; Promoter Regions, Genetic ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; RNA Polymerase Sigma 54 ; Sequence Deletion ; sigma 54 ; sigma 54-core RNA polymerase interaction ; Sigma Factor - chemistry ; Sigma Factor - genetics ; Sigma Factor - metabolism ; Sinorhizobium meliloti - genetics</subject><ispartof>Journal of molecular biology, 1994-02, Vol.236 (1), p.81-90</ispartof><rights>1994 Academic Press</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-2e58d6f2714464d3ba9eccbdf1962106df09a34d49ddd8c2abd6688dd0f18bbe3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jmbi.1994.1120$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3923447$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8107127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wong, Cai'ne</creatorcontrib><creatorcontrib>Tintut, Yin</creatorcontrib><creatorcontrib>Gralla, Jay D.</creatorcontrib><title>The Domain Structure of Sigma 54 as Determined by Analysis of a Set of Deletion Mutants</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Escherichia coli σ54 was analyzed by making a series of 16 internal deletions within its gene and analyzing the properties of the mutant proteins. All of the mutant proteins except one were strongly defective in a growth test that relied on σ54 function. Additional assays were applied to determine the causes of these defects. The assays monitored the following properties; the level of protein expression; ability to bind to the -24 promoter element of the
glnAP2 promoter
in vivo; the ability to bind to the -12 promoter element
in vivo; ability to melt the promoter start site
in vivo; ability to bind the
Rhizobium meliloti nifH promoter
in vitro; and the ability to form a sigma 54-core RNA polymerase complex (Eσ54 holoenzyme)
in vitro. The analysis shows a modular structure in that certain regions of the protein predominate in contributing to each of these properties. A large carboxyl region of the protein is essential for promoter binding. A smaller amino-terminal segment is essential for DNA melting. An element essential for the forming the Eσ54 holoenzyme lies between these two regions. None of these domains resemble those of σ70 and this difference is discussed in view of the different transcription mechanisms directed by the two proteins.</description><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins</subject><subject>functional domains</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes, Bacterial</subject><subject>Genetics</subject><subject>Microbiology</subject><subject>Nitrogen Fixation - genetics</subject><subject>Nitrogenase - chemistry</subject><subject>Nitrogenase - genetics</subject><subject>Nitrogenase - metabolism</subject><subject>Oxidoreductases</subject><subject>Promoter Regions, Genetic</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>RNA Polymerase Sigma 54</subject><subject>Sequence Deletion</subject><subject>sigma 54</subject><subject>sigma 54-core RNA polymerase interaction</subject><subject>Sigma Factor - chemistry</subject><subject>Sigma Factor - genetics</subject><subject>Sigma Factor - metabolism</subject><subject>Sinorhizobium meliloti - genetics</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PHDEQhq0IBAdJmw7JBUq3x_jjvHaJuCQggSiOKKXltWcTo_0gthfp_j23uhNdRDUjvc-8Gj2EfGWwZADq6rlv4pIZI5eMcfhEFgy0qbQS-ogsADivuBbqlJzl_AwAKyH1CTnRDGrG6wX5_fQX6XrsXRzopqTJlykhHVu6iX96R1eSukzXWDD1ccBAmy29Hly3zTHPlKMbLPOyxg5LHAf6MBU3lPyZHLeuy_jlMM_Jrx_fn25uq_vHn3c31_eVF8aUiuNKB9XymkmpZBCNM-h9E1pmFGegQgvGCRmkCSFoz10TlNI6BGiZbhoU5-Tbvvcljf8mzMX2MXvsOjfgOGVbK6F4XcOHIFOGKzBqBy73oE9jzglb-5Ji79LWMrCzcjsrt7NyOyvfHVwcmqemx_COHxzv8stD7rJ3XZvc4GN-x4ThQsoZ03sMd7peIyabfcTBY4gJfbFhjP_74A1Gg5uv</recordid><startdate>19940211</startdate><enddate>19940211</enddate><creator>Wong, Cai'ne</creator><creator>Tintut, Yin</creator><creator>Gralla, Jay D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>19940211</creationdate><title>The Domain Structure of Sigma 54 as Determined by Analysis of a Set of Deletion Mutants</title><author>Wong, Cai'ne ; Tintut, Yin ; Gralla, Jay D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-2e58d6f2714464d3ba9eccbdf1962106df09a34d49ddd8c2abd6688dd0f18bbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins</topic><topic>functional domains</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes, Bacterial</topic><topic>Genetics</topic><topic>Microbiology</topic><topic>Nitrogen Fixation - genetics</topic><topic>Nitrogenase - chemistry</topic><topic>Nitrogenase - genetics</topic><topic>Nitrogenase - metabolism</topic><topic>Oxidoreductases</topic><topic>Promoter Regions, Genetic</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>RNA Polymerase Sigma 54</topic><topic>Sequence Deletion</topic><topic>sigma 54</topic><topic>sigma 54-core RNA polymerase interaction</topic><topic>Sigma Factor - chemistry</topic><topic>Sigma Factor - genetics</topic><topic>Sigma Factor - metabolism</topic><topic>Sinorhizobium meliloti - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, Cai'ne</creatorcontrib><creatorcontrib>Tintut, Yin</creatorcontrib><creatorcontrib>Gralla, Jay D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, Cai'ne</au><au>Tintut, Yin</au><au>Gralla, Jay D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Domain Structure of Sigma 54 as Determined by Analysis of a Set of Deletion Mutants</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>1994-02-11</date><risdate>1994</risdate><volume>236</volume><issue>1</issue><spage>81</spage><epage>90</epage><pages>81-90</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><coden>JMOBAK</coden><abstract>Escherichia coli σ54 was analyzed by making a series of 16 internal deletions within its gene and analyzing the properties of the mutant proteins. All of the mutant proteins except one were strongly defective in a growth test that relied on σ54 function. Additional assays were applied to determine the causes of these defects. The assays monitored the following properties; the level of protein expression; ability to bind to the -24 promoter element of the
glnAP2 promoter
in vivo; the ability to bind to the -12 promoter element
in vivo; ability to melt the promoter start site
in vivo; ability to bind the
Rhizobium meliloti nifH promoter
in vitro; and the ability to form a sigma 54-core RNA polymerase complex (Eσ54 holoenzyme)
in vitro. The analysis shows a modular structure in that certain regions of the protein predominate in contributing to each of these properties. A large carboxyl region of the protein is essential for promoter binding. A smaller amino-terminal segment is essential for DNA melting. An element essential for the forming the Eσ54 holoenzyme lies between these two regions. None of these domains resemble those of σ70 and this difference is discussed in view of the different transcription mechanisms directed by the two proteins.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>8107127</pmid><doi>10.1006/jmbi.1994.1120</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 1994-02, Vol.236 (1), p.81-90 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_proquest_miscellaneous_76362770 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Bacterial Proteins - biosynthesis Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology Biological and medical sciences DNA, Bacterial - metabolism DNA-Binding Proteins - metabolism DNA-Directed RNA Polymerases - metabolism Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins functional domains Fundamental and applied biological sciences. Psychology Genes, Bacterial Genetics Microbiology Nitrogen Fixation - genetics Nitrogenase - chemistry Nitrogenase - genetics Nitrogenase - metabolism Oxidoreductases Promoter Regions, Genetic Recombinant Proteins - chemistry Recombinant Proteins - metabolism RNA Polymerase Sigma 54 Sequence Deletion sigma 54 sigma 54-core RNA polymerase interaction Sigma Factor - chemistry Sigma Factor - genetics Sigma Factor - metabolism Sinorhizobium meliloti - genetics |
title | The Domain Structure of Sigma 54 as Determined by Analysis of a Set of Deletion Mutants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A04%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Domain%20Structure%20of%20Sigma%2054%20as%20Determined%20by%20Analysis%20of%20a%20Set%20of%20Deletion%20Mutants&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Wong,%20Cai'ne&rft.date=1994-02-11&rft.volume=236&rft.issue=1&rft.spage=81&rft.epage=90&rft.pages=81-90&rft.issn=0022-2836&rft.eissn=1089-8638&rft.coden=JMOBAK&rft_id=info:doi/10.1006/jmbi.1994.1120&rft_dat=%3Cproquest_cross%3E16926096%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16926096&rft_id=info:pmid/8107127&rft_els_id=S002228368471120X&rfr_iscdi=true |