The Domain Structure of Sigma 54 as Determined by Analysis of a Set of Deletion Mutants

Escherichia coli σ54 was analyzed by making a series of 16 internal deletions within its gene and analyzing the properties of the mutant proteins. All of the mutant proteins except one were strongly defective in a growth test that relied on σ54 function. Additional assays were applied to determine t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 1994-02, Vol.236 (1), p.81-90
Hauptverfasser: Wong, Cai'ne, Tintut, Yin, Gralla, Jay D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue 1
container_start_page 81
container_title Journal of molecular biology
container_volume 236
creator Wong, Cai'ne
Tintut, Yin
Gralla, Jay D.
description Escherichia coli σ54 was analyzed by making a series of 16 internal deletions within its gene and analyzing the properties of the mutant proteins. All of the mutant proteins except one were strongly defective in a growth test that relied on σ54 function. Additional assays were applied to determine the causes of these defects. The assays monitored the following properties; the level of protein expression; ability to bind to the -24 promoter element of the glnAP2 promoter in vivo; the ability to bind to the -12 promoter element in vivo; ability to melt the promoter start site in vivo; ability to bind the Rhizobium meliloti nifH promoter in vitro; and the ability to form a sigma 54-core RNA polymerase complex (Eσ54 holoenzyme) in vitro. The analysis shows a modular structure in that certain regions of the protein predominate in contributing to each of these properties. A large carboxyl region of the protein is essential for promoter binding. A smaller amino-terminal segment is essential for DNA melting. An element essential for the forming the Eσ54 holoenzyme lies between these two regions. None of these domains resemble those of σ70 and this difference is discussed in view of the different transcription mechanisms directed by the two proteins.
doi_str_mv 10.1006/jmbi.1994.1120
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76362770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002228368471120X</els_id><sourcerecordid>16926096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-2e58d6f2714464d3ba9eccbdf1962106df09a34d49ddd8c2abd6688dd0f18bbe3</originalsourceid><addsrcrecordid>eNqFkD1PHDEQhq0IBAdJmw7JBUq3x_jjvHaJuCQggSiOKKXltWcTo_0gthfp_j23uhNdRDUjvc-8Gj2EfGWwZADq6rlv4pIZI5eMcfhEFgy0qbQS-ogsADivuBbqlJzl_AwAKyH1CTnRDGrG6wX5_fQX6XrsXRzopqTJlykhHVu6iX96R1eSukzXWDD1ccBAmy29Hly3zTHPlKMbLPOyxg5LHAf6MBU3lPyZHLeuy_jlMM_Jrx_fn25uq_vHn3c31_eVF8aUiuNKB9XymkmpZBCNM-h9E1pmFGegQgvGCRmkCSFoz10TlNI6BGiZbhoU5-Tbvvcljf8mzMX2MXvsOjfgOGVbK6F4XcOHIFOGKzBqBy73oE9jzglb-5Ji79LWMrCzcjsrt7NyOyvfHVwcmqemx_COHxzv8stD7rJ3XZvc4GN-x4ThQsoZ03sMd7peIyabfcTBY4gJfbFhjP_74A1Gg5uv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16926096</pqid></control><display><type>article</type><title>The Domain Structure of Sigma 54 as Determined by Analysis of a Set of Deletion Mutants</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Wong, Cai'ne ; Tintut, Yin ; Gralla, Jay D.</creator><creatorcontrib>Wong, Cai'ne ; Tintut, Yin ; Gralla, Jay D.</creatorcontrib><description>Escherichia coli σ54 was analyzed by making a series of 16 internal deletions within its gene and analyzing the properties of the mutant proteins. All of the mutant proteins except one were strongly defective in a growth test that relied on σ54 function. Additional assays were applied to determine the causes of these defects. The assays monitored the following properties; the level of protein expression; ability to bind to the -24 promoter element of the glnAP2 promoter in vivo; the ability to bind to the -12 promoter element in vivo; ability to melt the promoter start site in vivo; ability to bind the Rhizobium meliloti nifH promoter in vitro; and the ability to form a sigma 54-core RNA polymerase complex (Eσ54 holoenzyme) in vitro. The analysis shows a modular structure in that certain regions of the protein predominate in contributing to each of these properties. A large carboxyl region of the protein is essential for promoter binding. A smaller amino-terminal segment is essential for DNA melting. An element essential for the forming the Eσ54 holoenzyme lies between these two regions. None of these domains resemble those of σ70 and this difference is discussed in view of the different transcription mechanisms directed by the two proteins.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1006/jmbi.1994.1120</identifier><identifier>PMID: 8107127</identifier><identifier>CODEN: JMOBAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Bacterial Proteins - biosynthesis ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Biological and medical sciences ; DNA, Bacterial - metabolism ; DNA-Binding Proteins - metabolism ; DNA-Directed RNA Polymerases - metabolism ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins ; functional domains ; Fundamental and applied biological sciences. Psychology ; Genes, Bacterial ; Genetics ; Microbiology ; Nitrogen Fixation - genetics ; Nitrogenase - chemistry ; Nitrogenase - genetics ; Nitrogenase - metabolism ; Oxidoreductases ; Promoter Regions, Genetic ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; RNA Polymerase Sigma 54 ; Sequence Deletion ; sigma 54 ; sigma 54-core RNA polymerase interaction ; Sigma Factor - chemistry ; Sigma Factor - genetics ; Sigma Factor - metabolism ; Sinorhizobium meliloti - genetics</subject><ispartof>Journal of molecular biology, 1994-02, Vol.236 (1), p.81-90</ispartof><rights>1994 Academic Press</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-2e58d6f2714464d3ba9eccbdf1962106df09a34d49ddd8c2abd6688dd0f18bbe3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/jmbi.1994.1120$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3923447$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8107127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wong, Cai'ne</creatorcontrib><creatorcontrib>Tintut, Yin</creatorcontrib><creatorcontrib>Gralla, Jay D.</creatorcontrib><title>The Domain Structure of Sigma 54 as Determined by Analysis of a Set of Deletion Mutants</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Escherichia coli σ54 was analyzed by making a series of 16 internal deletions within its gene and analyzing the properties of the mutant proteins. All of the mutant proteins except one were strongly defective in a growth test that relied on σ54 function. Additional assays were applied to determine the causes of these defects. The assays monitored the following properties; the level of protein expression; ability to bind to the -24 promoter element of the glnAP2 promoter in vivo; the ability to bind to the -12 promoter element in vivo; ability to melt the promoter start site in vivo; ability to bind the Rhizobium meliloti nifH promoter in vitro; and the ability to form a sigma 54-core RNA polymerase complex (Eσ54 holoenzyme) in vitro. The analysis shows a modular structure in that certain regions of the protein predominate in contributing to each of these properties. A large carboxyl region of the protein is essential for promoter binding. A smaller amino-terminal segment is essential for DNA melting. An element essential for the forming the Eσ54 holoenzyme lies between these two regions. None of these domains resemble those of σ70 and this difference is discussed in view of the different transcription mechanisms directed by the two proteins.</description><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins</subject><subject>functional domains</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes, Bacterial</subject><subject>Genetics</subject><subject>Microbiology</subject><subject>Nitrogen Fixation - genetics</subject><subject>Nitrogenase - chemistry</subject><subject>Nitrogenase - genetics</subject><subject>Nitrogenase - metabolism</subject><subject>Oxidoreductases</subject><subject>Promoter Regions, Genetic</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>RNA Polymerase Sigma 54</subject><subject>Sequence Deletion</subject><subject>sigma 54</subject><subject>sigma 54-core RNA polymerase interaction</subject><subject>Sigma Factor - chemistry</subject><subject>Sigma Factor - genetics</subject><subject>Sigma Factor - metabolism</subject><subject>Sinorhizobium meliloti - genetics</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PHDEQhq0IBAdJmw7JBUq3x_jjvHaJuCQggSiOKKXltWcTo_0gthfp_j23uhNdRDUjvc-8Gj2EfGWwZADq6rlv4pIZI5eMcfhEFgy0qbQS-ogsADivuBbqlJzl_AwAKyH1CTnRDGrG6wX5_fQX6XrsXRzopqTJlykhHVu6iX96R1eSukzXWDD1ccBAmy29Hly3zTHPlKMbLPOyxg5LHAf6MBU3lPyZHLeuy_jlMM_Jrx_fn25uq_vHn3c31_eVF8aUiuNKB9XymkmpZBCNM-h9E1pmFGegQgvGCRmkCSFoz10TlNI6BGiZbhoU5-Tbvvcljf8mzMX2MXvsOjfgOGVbK6F4XcOHIFOGKzBqBy73oE9jzglb-5Ji79LWMrCzcjsrt7NyOyvfHVwcmqemx_COHxzv8stD7rJ3XZvc4GN-x4ThQsoZ03sMd7peIyabfcTBY4gJfbFhjP_74A1Gg5uv</recordid><startdate>19940211</startdate><enddate>19940211</enddate><creator>Wong, Cai'ne</creator><creator>Tintut, Yin</creator><creator>Gralla, Jay D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>19940211</creationdate><title>The Domain Structure of Sigma 54 as Determined by Analysis of a Set of Deletion Mutants</title><author>Wong, Cai'ne ; Tintut, Yin ; Gralla, Jay D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-2e58d6f2714464d3ba9eccbdf1962106df09a34d49ddd8c2abd6688dd0f18bbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins</topic><topic>functional domains</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes, Bacterial</topic><topic>Genetics</topic><topic>Microbiology</topic><topic>Nitrogen Fixation - genetics</topic><topic>Nitrogenase - chemistry</topic><topic>Nitrogenase - genetics</topic><topic>Nitrogenase - metabolism</topic><topic>Oxidoreductases</topic><topic>Promoter Regions, Genetic</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>RNA Polymerase Sigma 54</topic><topic>Sequence Deletion</topic><topic>sigma 54</topic><topic>sigma 54-core RNA polymerase interaction</topic><topic>Sigma Factor - chemistry</topic><topic>Sigma Factor - genetics</topic><topic>Sigma Factor - metabolism</topic><topic>Sinorhizobium meliloti - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, Cai'ne</creatorcontrib><creatorcontrib>Tintut, Yin</creatorcontrib><creatorcontrib>Gralla, Jay D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, Cai'ne</au><au>Tintut, Yin</au><au>Gralla, Jay D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Domain Structure of Sigma 54 as Determined by Analysis of a Set of Deletion Mutants</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>1994-02-11</date><risdate>1994</risdate><volume>236</volume><issue>1</issue><spage>81</spage><epage>90</epage><pages>81-90</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><coden>JMOBAK</coden><abstract>Escherichia coli σ54 was analyzed by making a series of 16 internal deletions within its gene and analyzing the properties of the mutant proteins. All of the mutant proteins except one were strongly defective in a growth test that relied on σ54 function. Additional assays were applied to determine the causes of these defects. The assays monitored the following properties; the level of protein expression; ability to bind to the -24 promoter element of the glnAP2 promoter in vivo; the ability to bind to the -12 promoter element in vivo; ability to melt the promoter start site in vivo; ability to bind the Rhizobium meliloti nifH promoter in vitro; and the ability to form a sigma 54-core RNA polymerase complex (Eσ54 holoenzyme) in vitro. The analysis shows a modular structure in that certain regions of the protein predominate in contributing to each of these properties. A large carboxyl region of the protein is essential for promoter binding. A smaller amino-terminal segment is essential for DNA melting. An element essential for the forming the Eσ54 holoenzyme lies between these two regions. None of these domains resemble those of σ70 and this difference is discussed in view of the different transcription mechanisms directed by the two proteins.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>8107127</pmid><doi>10.1006/jmbi.1994.1120</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 1994-02, Vol.236 (1), p.81-90
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_76362770
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Bacterial Proteins - biosynthesis
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Biological and medical sciences
DNA, Bacterial - metabolism
DNA-Binding Proteins - metabolism
DNA-Directed RNA Polymerases - metabolism
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins
functional domains
Fundamental and applied biological sciences. Psychology
Genes, Bacterial
Genetics
Microbiology
Nitrogen Fixation - genetics
Nitrogenase - chemistry
Nitrogenase - genetics
Nitrogenase - metabolism
Oxidoreductases
Promoter Regions, Genetic
Recombinant Proteins - chemistry
Recombinant Proteins - metabolism
RNA Polymerase Sigma 54
Sequence Deletion
sigma 54
sigma 54-core RNA polymerase interaction
Sigma Factor - chemistry
Sigma Factor - genetics
Sigma Factor - metabolism
Sinorhizobium meliloti - genetics
title The Domain Structure of Sigma 54 as Determined by Analysis of a Set of Deletion Mutants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A04%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Domain%20Structure%20of%20Sigma%2054%20as%20Determined%20by%20Analysis%20of%20a%20Set%20of%20Deletion%20Mutants&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Wong,%20Cai'ne&rft.date=1994-02-11&rft.volume=236&rft.issue=1&rft.spage=81&rft.epage=90&rft.pages=81-90&rft.issn=0022-2836&rft.eissn=1089-8638&rft.coden=JMOBAK&rft_id=info:doi/10.1006/jmbi.1994.1120&rft_dat=%3Cproquest_cross%3E16926096%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16926096&rft_id=info:pmid/8107127&rft_els_id=S002228368471120X&rfr_iscdi=true