Structural organization of de novo purine biosynthesis enzymes in plants : 5-aminoimidazole ribonucleotide carboxylase and 5-aminoimidazole-4-N-succinocarboxamide ribonucleotide synthetase cDNAs from Vigna aconitifolia

Nodules of tropical legumes generally export symbiotically fixed nitrogen in the form of ureides that are produced by oxidation of de novo synthesized purines. To investigate the regulation of de novo purine biosynthesis in these nodules, we have isolated cDNA clones encoding 5-aminoimidazole ribonu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant molecular biology 1994, Vol.24 (2), p.389-395
Hauptverfasser: CHAPMAN, K. A, DELAUNEY, A. J, KIM, J. H, VERMA, D. P. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nodules of tropical legumes generally export symbiotically fixed nitrogen in the form of ureides that are produced by oxidation of de novo synthesized purines. To investigate the regulation of de novo purine biosynthesis in these nodules, we have isolated cDNA clones encoding 5-aminoimidazole ribonucleotide (AIR) carboxylase and 5-aminoimidazole-4-N-succinocarboxamide ribonucleotide (SAICAR) synthetase from a mothbean (Vigna aconitifolia) nodule cDNA library by complementation of Escherichia coli purE and purC mutants, respectively. Sequencing of these clones revealed that the two enzymes are distinct proteins in mothbean, unlike in animals where both activities are associated with a single bifunctional polypeptide. As is the case in yeast, the mothbean AIR carboxylase has a N-terminal domain homologous to the eubacterial purK gene product. This PurK-like domain appears to facilitate the binding of CO2 and is dispensable in the presence of high CO2 concentrations. Because the expression of the mothbean PurE cDNA clone in E. coli apparently generates a truncated polypeptide lacking at least 140 N-terminal amino acids, this N-terminal region of the enzyme may not be essential for its CO2-binding activity.
ISSN:0167-4412
1573-5028
DOI:10.1007/BF00020176