Transmission characteristics of axial waves in blood vessels

The elastic behavior of blood vessels can be quantitatively examined by measuring the propagation characteristics of waves transmitted by them. In addition, specific information regarding the viscoelastic properties of the vessel wall can be deduced by comparing the observed wave transmission data w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 1968-12, Vol.1 (4), p.235,IN1,243-242,IN6,246
Hauptverfasser: Anliker, M., Moritz, W.E., Ogden, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The elastic behavior of blood vessels can be quantitatively examined by measuring the propagation characteristics of waves transmitted by them. In addition, specific information regarding the viscoelastic properties of the vessel wall can be deduced by comparing the observed wave transmission data with theoretical predictions. The relevance of these deductions is directly dependent on the validity of the mathematical model for the mechanical behavior of blood vessels used in the theoretical analysis. Previous experimental investigations of waves in blood vessels have been restricted to pressure waves even though theoretical studies predict three types of waves with distinctly different transmission characteristics. These waves can be distinguished by the dominant displacement component of the vessel wall and are accordingly referred to as radial, axial and circumferential waves. The radial waves are also referred to as pressure waves since they exhibit pronounced pressure fluctuations. For a thorough evaluation of the mathematical models used in the analysis it is necessary to measure also the dispersion and attenuation of the axial and circumferential (torsion) waves. To this end a method has been developed to determine the phase velocities and damping of sinusoidal axial waves in the carotid artery of anesthetized dogs with the aid of an electro-optical tracking system. For frequencies between 25 and 150 Hz the speed of the axial waves was between 20 and 40 m/sec and generally increased with frequency, while the natural pressure wave travelled at a speed of about 10 m/sec. On the basis of an isotropic wall model the axial wave speed should however be approximately 5 times higher than the pressure wave speed. This discrepancy can be interpreted as an indication for an anisotropic behavior of the carotid wall. The carotid artery appears to be more elastic in the axial than in the circumferential direction.
ISSN:0021-9290
1873-2380
DOI:10.1016/0021-9290(68)90019-5