Tailoring the Porous Hierarchy and the Tetrahedral Aluminum Content by Using Carboxylate Ligands: Hierarchically Structured Macro-Mesoporous Aluminosilicates from a Single Molecular Source

A novel yet facile synthesis pathway has been developed for the design of hierarchically structured macro-mesoporous aluminosilicates with high aluminum content at tetrahedral sites using a single molecular bifunctional alkoxide (sec-BuO)2−Al−O-Si(OEt)3 precursor. The use of carboxylate ligands and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2010-11, Vol.26 (22), p.17603-17616
Hauptverfasser: Lemaire, Arnaud, Su, Bao-Lian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel yet facile synthesis pathway has been developed for the design of hierarchically structured macro-mesoporous aluminosilicates with high aluminum content at tetrahedral sites using a single molecular bifunctional alkoxide (sec-BuO)2−Al−O-Si(OEt)3 precursor. The use of carboxylate ligands and a highly alkaline media slow down the polymerization rate of the aluminum alkoxide functionality, thus permitting the preservation of the intrinsic Al−O−Si linkage. The hierarchically structured porous aluminosilicate materials present an unprecedented low Si/Al ratio close to 1. Heat treatment applied to the synthesized material seems to favor the incorporation of aluminum into tetrahedral position (intraframework aluminum species). The macro-mesoporosity was spontaneously generated, without the use of any external templating agent, by the hydrodynamic flow of the solvents released during the rapid hydrolysis and condensation processes of this double alkoxide. This method results in materials with an open array of interconnected macrochannels. The synthesized aluminosilicate materials with tailorable macro-mesoporous hierarchy and very high Al content at tetrahedral position hold huge promise in various applications as catalysts, catalysts supports, or adsorbents.
ISSN:0743-7463
1520-5827
DOI:10.1021/la1033355