Human ferrochelatase is an iron-sulfur protein

Recombinant human ferrochelatase has been expressed in Escherichia coli and purified to homogeneity. Metal analyses revealed approximately 2 mol of non-heme Fe per mol of the purified enzyme (M(r) = 40,000). The UV-visible absorption spectrum of the purified enzyme consists of a protein absorption a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1994-01, Vol.33 (2), p.403-407
Hauptverfasser: Dailey, Harry A, Finnegan, Michael G, Johnson, Michael K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recombinant human ferrochelatase has been expressed in Escherichia coli and purified to homogeneity. Metal analyses revealed approximately 2 mol of non-heme Fe per mol of the purified enzyme (M(r) = 40,000). The UV-visible absorption spectrum of the purified enzyme consists of a protein absorption at 278 nm (epsilon approximately 90,000 M-1 cm-1) and bands at 330 nm (epsilon approximately 24,000 M-1 cm-1), 460 nm (shoulder, epsilon approximately 11,000 M-1 cm-1), and 550 nm (shoulder, epsilon approximately 9000 M-1 cm-1) that are indicative of a [2Fe-2S]2+ cluster. The spectra show an additional band at 415 nm that varied in intensity for different preparations and is attributed, at least in part, to a minor component of enzyme-associated high-spin Fe(III) heme. The presence of a single [2Fe-2S]2+,+ cluster as a redox active component of human ferrochelatase was confirmed by variable-temperature MCD and EPR studies of the dithionite-reduced enzyme which showed the presence of a S = 1/2 [2Fe-2S]+ cluster in addition to residual high spin Fe(II) heme. The reduced enzyme exhibits a S = 1/2 EPR signal, g = 2.00, 1.94, 1.91 accounting for 0.75 +/- 0.25 spins/molecule, that readily saturates at low microwave powers below 10 K but is observable without significant broadening at temperatures up to 100 K. The Fe-S cluster is labile and gradually disappears over period of 24 h, with concomitant loss of enzyme activity, when the enzyme is stored aerobically at 4 degrees C.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00168a003