Quasi-maximum likelihood estimation of volatility with high frequency data
This paper investigates the properties of the well-known maximum likelihood estimator in the presence of stochastic volatility and market microstructure noise, by extending the classic asymptotic results of quasi-maximum likelihood estimation. When trying to estimate the integrated volatility and th...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 2010-11, Vol.159 (1), p.235-250 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper investigates the properties of the well-known maximum likelihood estimator in the presence of stochastic volatility and market microstructure noise, by extending the classic asymptotic results of quasi-maximum likelihood estimation. When trying to estimate the integrated volatility and the variance of noise, this parametric approach remains consistent, efficient and robust as a quasi-estimator under misspecified assumptions. Moreover, it shares the model-free feature with nonparametric alternatives, for instance realized kernels, while being advantageous over them in terms of finite sample performance. In light of quadratic representation, this estimator behaves like an iterative exponential realized kernel asymptotically. Comparisons with a variety of implementations of the Tukey–Hanning
2 kernel are provided using Monte Carlo simulations, and an empirical study with the Euro/US Dollar future illustrates its application in practice. |
---|---|
ISSN: | 0304-4076 1872-6895 |
DOI: | 10.1016/j.jeconom.2010.07.002 |