Organization of Krebs tricarboxylic acid cycle enzymes in mitochondria
Sonic oscillation of mitochondria usually leads to the release of a number of Krebs tricarboxylic acid cycle enzymes. These enzymes have, therefore, been referred to as soluble matrix enzymes. In the present report, we show that gentle sonic or osmotic disruption can be used to obtain a mitochondria...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1985-09, Vol.260 (19), p.10800-10805 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sonic oscillation of mitochondria usually leads to the release of a number of Krebs tricarboxylic acid cycle enzymes. These enzymes have, therefore, been referred to as soluble matrix enzymes. In the present report, we show that gentle sonic or osmotic disruption can be used to obtain a mitochondrial preparation where these enzymes appear to be organized in a large complex of proteins. Using citrate synthase as a marker for these enzymes, we show that the proposed complex is easily sedimented at 32,000 X g in 30 min. The exposed citrate synthase in these complexes can be inhibited by its antibody, indicating that the enzymes are not merely entrapped in substrate-permeable vesicles. The effects of pH, temperature, ionic strength, and several metabolites on the ability to obtain the sedimentable citrate synthase have been tested. These studies indicate that the complex is stable at conditions presumed to exist in situ. Electron microscopic studies show that gentle sonic oscillation gives rise to an efflux of mitochondrial matrix contents which tend to remain attached to the original membranes. The sedimentable fraction also contained four other presumably soluble Krebs tricarboxylic acid cycle enzymes: aconitase, NAD+-isocitrate dehydrogenase, fumarase, and malate dehydrogenase. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/S0021-9258(19)85153-0 |