Ion Mobility Mass Spectrometry of Two Tetrameric Membrane Protein Complexes Reveals Compact Structures and Differences in Stability and Packing

Here we examined the gas-phase structures of two tetrameric membrane protein complexes by ion mobility mass spectrometry. The collision cross sections measured for the ion channel are in accord with a compact configuration of subunits, suggesting that the native-like structure can be preserved under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2010-11, Vol.132 (44), p.15468-15470
Hauptverfasser: Wang, Sheila C, Politis, Argyris, Di Bartolo, Natalie, Bavro, Vassiliy N, Tucker, Stephen J, Booth, Paula J, Barrera, Nelson P, Robinson, Carol V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here we examined the gas-phase structures of two tetrameric membrane protein complexes by ion mobility mass spectrometry. The collision cross sections measured for the ion channel are in accord with a compact configuration of subunits, suggesting that the native-like structure can be preserved under the harsh activation conditions required to release it from the detergent micelle into the gas phase. We also found that the quaternary structure of the transporter, which has fewer transmembrane subunits than the ion channel, is less stable once stripped of detergents and bulk water. These results highlight the potential of ion mobility mass spectrometry for characterizing the overall topologies of membrane protein complexes and the structural changes associated with nucleotide, lipid, and drug binding.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja104312e