Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition

As part of our search for botanical sources of SARS-CoV 3CL(pro) inhibitors, we selected Torreya nucifera, which is traditionally used as a medicinal plant in Asia. The ethanol extract of T. nucifera leaves exhibited good SARS-CoV 3CL(pro) inhibitory activity (62% at 100μg/mL). Following bioactivity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioorganic & medicinal chemistry 2010-11, Vol.18 (22), p.7940-7947
Hauptverfasser: Ryu, Young Bae, Jeong, Hyung Jae, Kim, Jang Hoon, Kim, Young Min, Park, Ji-Young, Kim, Doman, Nguyen, Thi Thanh Hanh, Park, Su-Jin, Chang, Jong Sun, Park, Ki Hun, Rho, Mun-Chual, Lee, Woo Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As part of our search for botanical sources of SARS-CoV 3CL(pro) inhibitors, we selected Torreya nucifera, which is traditionally used as a medicinal plant in Asia. The ethanol extract of T. nucifera leaves exhibited good SARS-CoV 3CL(pro) inhibitory activity (62% at 100μg/mL). Following bioactivity-guided fractionation, eight diterpenoids (1-8) and four biflavonoids (9-12) were isolated and evaluated for SARS-CoV 3CL(pro) inhibition using fluorescence resonance energy transfer analysis. Of these compounds, the biflavone amentoflavone (9) (IC(50)=8.3μM) showed most potent 3CL(pro) inhibitory effect. Three additional authentic flavones (apigenin, luteolin and quercetin) were tested to establish the basic structure-activity relationship of biflavones. Apigenin, luteolin, and quercetin inhibited 3CL(pro) activity with IC(50) values of 280.8, 20.2, and 23.8μM, respectively. Values of binding energy obtained in a molecular docking study supported the results of enzymatic assays. More potent activity appeared to be associated with the presence of an apigenin moiety at position C-3' of flavones, as biflavone had an effect on 3CL(pro) inhibitory activity.
ISSN:1464-3391
DOI:10.1016/j.bmc.2010.09.035