Acetylation control of the retinoblastoma tumour-suppressor protein
The retinoblastoma tumour-suppressor protein (pRb) and p300/CBP co-activator proteins are important for control of proliferation and in tumour cells these are sequestered by viral oncoproteins such as E1A. pRb is involved in negatively regulating growth, and p300/CBP proteins have histone acetyltran...
Gespeichert in:
Veröffentlicht in: | Nature cell biology 2001-07, Vol.3 (7), p.667-674 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The retinoblastoma tumour-suppressor protein (pRb) and p300/CBP co-activator proteins are important for control of proliferation and in tumour cells these are sequestered by viral oncoproteins such as E1A. pRb is involved in negatively regulating growth, and p300/CBP proteins have histone acetyltransferase (HAT) activity, which influences gene expression. Although it is known that phosphorylation by G1 cyclin-dependent kinases (CDKs) regulates pRb activity, the nature and role of other post-translational modifications is not understood. Here we identify acetylation as a new type of modification and level of control in pRb function. Adenovirus E1A, which binds p300/CBP through an amino-terminal transformation-sensitive domain, stimulates the acetylation of pRb by recruiting p300 and pRb into a multimeric-protein complex. Furthermore, pRb acetylation is under cell-cycle control, and acetylation hinders the phosphorylation of pRb by cyclin-dependent kinases. pRb binds more strongly when acetylated to the MDM2 oncoprotein, which indicates that acetylation may regulate protein–protein interactions in the pRb pathway. The acetylation of pRb defines a new level of cell-cycle control mediated by HAT. Furthermore, our results establish a relationship between p300, pRb and acetylation in which E1A acts to recruit and target a cellular HAT activity to pRb. |
---|---|
ISSN: | 1465-7392 1476-4679 1476-4679 |
DOI: | 10.1038/35083062 |