EpiTOP—a proteochemometric tool for MHC class II binding prediction

Motivation: T-cell epitope identification is a critical immunoinformatic problem within vaccine design. To be an epitope, a peptide must bind an MHC protein. Results: Here, we present EpiTOP, the first server predicting MHC class II binding based on proteochemometrics, a QSAR approach for ligands bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2010-08, Vol.26 (16), p.2066-2068
Hauptverfasser: Dimitrov, Ivan, Garnev, Panayot, Flower, Darren R., Doytchinova, Irini
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivation: T-cell epitope identification is a critical immunoinformatic problem within vaccine design. To be an epitope, a peptide must bind an MHC protein. Results: Here, we present EpiTOP, the first server predicting MHC class II binding based on proteochemometrics, a QSAR approach for ligands binding to several related proteins. EpiTOP uses a quantitative matrix to predict binding to 12 HLA-DRB1 alleles. It identifies 89% of known epitopes within the top 20% of predicted binders, reducing laboratory labour, materials and time by 80%. EpiTOP is easy to use, gives comprehensive quantitative predictions and will be expanded and updated with new quantitative matrices over time. Availability: EpiTOP is freely accessible at http://www.pharmfac.net/EpiTOP Contact: idoytchinova@pharmfac.net Supplementary information: Supplementary data are available at Bioinformatics online.
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btq324