A ceramic-based anticancer drug delivery system to treat breast cancer
Drug delivery systems offer the advantage of sustained targeted release with minimal side effect. In the present study, the therapeutic efficacy of a porous silica–calcium phosphate nanocomposite (SCPC) as a new delivery system for 5-Fluorouracil (5-FU) was evaluated in vitro and in vivo. In vitro s...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in medicine 2010-09, Vol.21 (9), p.2701-2710 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Drug delivery systems offer the advantage of sustained targeted release with minimal side effect. In the present study, the therapeutic efficacy of a porous silica–calcium phosphate nanocomposite (SCPC) as a new delivery system for 5-Fluorouracil (5-FU) was evaluated in vitro and in vivo. In vitro studies showed that two formulations; SCPC50/5-FU and SCPC75/5-FU hybrids were very cytotoxic for 4T1 mammary tumor cells. In contrast, control SCPCs without drug did not show any measurable toxic effect. Release kinetics studies showed that SCPC75/5-FU hybrid provided a burst release of 5-FU in the first 24 h followed by a sustained release of a therapeutic dose (30.7 μg/day) of the drug for up to 32 days. Moreover, subcutaneous implantation of SCPC75/5-FU hybrid disk in an immunocompetent murine model of breast cancer stopped 4T1 tumor growth. Blood analyses showed comparable concentrations of Ca, P and Si in animals implanted with or without SCPC75 disks. These results strongly suggest that SCPC/5-FU hybrids can provide an effective treatment for solid tumors with minimal side effects. |
---|---|
ISSN: | 0957-4530 1573-4838 |
DOI: | 10.1007/s10856-010-4121-6 |