Insights into the structure of the Wyville Thomson Ridge overflow current from a fine-scale numerical model
One of the major pathways in the northern part of the Meridional Overturning Circulation (MOC) is that of the deep water in the Nordic Seas that runs through the Faroe-Shetland Channel (FSC) and Faroe Bank Channel (FBC), as well as crossing the Wyville Thomson Ridge (WTR), on its way into the Atlant...
Gespeichert in:
Veröffentlicht in: | Deep-sea research. Part I, Oceanographic research papers Oceanographic research papers, 2010-10, Vol.57 (10), p.1192-1205 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the major pathways in the northern part of the Meridional Overturning Circulation (MOC) is that of the deep water in the Nordic Seas that runs through the Faroe-Shetland Channel (FSC) and Faroe Bank Channel (FBC), as well as crossing the Wyville Thomson Ridge (WTR), on its way into the Atlantic Ocean. The WTR overflow cascades down the southern side of the ridge via the narrow Ellett Gully to the Cirolana Deep (CD) which, at 1700
m, is the deepest hole in the extreme north of the Rockall Trough. The overflow accounts for nearly 1/10th of the total Faroe-Shetland Channel Bottom Water (FSCBW) discharged through the Faroese channels and is an important intermediate water mass in the Rockall Trough. Over a period of only seven days in April 2003 bottom water temperatures cooled dramatically, from 4.46 to 3.03
°C in the CD and from 3.93 to 2.54
°C in the Ymir Trough (YT). A numerical general circulation model (MITgcm) has been applied in order to reproduce the details of this dense water overflow event. Model results were consistent with the observed cooling and total water transport. It was found that the descending gravity current forms a pair of mesoscale eddies with cyclonic and anticyclonic vorticity at the exit to the CD. Analysis of mixing processes were obtained when a passive tracer was included in the model. It was found that downstream flow is characterized by an explosive detrainment regime in the CD. The model sensitivity runs revealed that the final depth to which the overflow descends depends on the initial upstream velocity of the overflow, as well as the buoyancy difference. It is argued that models of overflows need to have realistic representations of the density structure of the overflow, and sufficiently fine vertical resolution, for the subsequent fate of the overflow to be accurately represented. |
---|---|
ISSN: | 0967-0637 1879-0119 |
DOI: | 10.1016/j.dsr.2010.06.006 |