Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide
Gene activation is a highly regulated process that requires the coordinated action of proteins to relieve chromatin repression and to promote transcriptional activation. Nuclear histone acetyltransferase (HAT) enzymes provide a mechanistic link between chromatin destabilization and gene activation b...
Gespeichert in:
Veröffentlicht in: | Nature (London) 1999-09, Vol.401 (6748), p.93-98 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gene activation is a highly regulated process that requires the coordinated action of proteins to relieve chromatin repression and to promote transcriptional activation. Nuclear histone acetyltransferase (HAT) enzymes provide a mechanistic link between chromatin destabilization and gene activation by acetylating the ε-amino group of specific lysine residues within the amino-terminal tails of core histones to facilitate access to DNA by transcriptional activators
1
,
2
. Here we report the high-resolution crystal structure of the HAT domain of
Tetrahymena
GCN5 (tGCN5) bound with both its physiologically relevant ligands, coenzyme A (CoA) and a histone H3 peptide, and the structures of nascent tGCN5 and a tGCN5/acetyl-CoA complex. Our structural data reveal histone-binding specificity for a random-coil structure containing a G-K-X-P recognition sequence, and show that CoA is essential for reorienting the enzyme for histone binding. Catalysis appears to involve water-mediated proton extraction from the substrate lysine by a glutamic acid general base and a backbone amide that stabilizes the transition-state reaction intermediate. Comparison with related
N
-acetyltransferases indicates a conserved structural framework for CoA binding and catalysis, and structural variability in regions associated with substrate-specific binding. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/43487 |