In situ biomonitoring of freshwater quality using the New Zealand mudsnail Potamopyrgus antipodarum (Gray) exposed to waste water treatment plant (WWTP) effluent discharges
Mollusk species have been shown to be sensitive to various endocrine disrupting compounds (EDC) at environmentally relevant concentrations. Waste water treatment plant (WWTP) effluents are a major source of potential or known EDC in the aquatic environment. The aim of this study was to develop an in...
Gespeichert in:
Veröffentlicht in: | Water research (Oxford) 2010-08, Vol.44 (15), p.4517-4528 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mollusk species have been shown to be sensitive to various endocrine disrupting compounds (EDC) at environmentally relevant concentrations. Waste water treatment plant (WWTP) effluents are a major source of potential or known EDC in the aquatic environment. The aim of this study was to develop an
in situ exposure method using the New Zealand mudsnail
Potamopyrgus antipodarum (Molluska, Hydrobiidea) to assess the impact of water quality on the life traits of this species, by focusing on its reproduction. The impact of three WWTP discharges on three different receiving rivers was studied. The effects of WWTP effluent on adult survival, weight, reproduction and vertebrate-like sex-steroid levels in snails were monitored for three to four weeks. Although the physicochemical and hydrological parameters varied greatly between the rivers, the caging experiments allowed us to detect significant impairment of the life traits of snails when exposed downstream of the WWTPs discharge. While adult survival was not affected by exposure, reproduction was significantly impacted downstream from the WWTP effluent discharges (60–70% decrease of embryos without shells after three to four weeks exposure) independently of the river. Modulations of steroid levels proved to be an informative parameter with an increase of testosterone downstream of the discharges, and increases and decreases of 17β-estradiol levels according to site. The endpoints used proved to be an adapted method for field exposures and allowed the discrimination between upstream and downstream sites. |
---|---|
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/j.watres.2010.06.019 |