Stathmin: Cellular localization of a major phosphoprotein in the adult rat and human CNS

Stathmin is a ubiquitous, 19 kDa cytoplasmic protein the phosphorylation of which is associated with many cellular signaling pathways. It is particularly abundant in neurons and reaches a peak of expression in the neonatal period, although it remains highly expressed in the adult brain. In order to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of comparative neurology (1911) 1993-11, Vol.337 (4), p.655-668
Hauptverfasser: Peschanski, Marc, Hirsch, Etienne, Dusart, Isabelle, Doye, Valérie, Marty, Serge, Manceau, Valérie, Sobel, André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stathmin is a ubiquitous, 19 kDa cytoplasmic protein the phosphorylation of which is associated with many cellular signaling pathways. It is particularly abundant in neurons and reaches a peak of expression in the neonatal period, although it remains highly expressed in the adult brain. In order to determine whether this abundant expression is associated with discrete cellular populations that are still at an immature stage during adulthood, as suggested by others, the cellular localization of stathmin was investigated in the adult rat and human central nervous system. Western blotting with a specific antiserum indicated that stathmin was unbiquitous in the brain and spinal cord but that its relative concentration varied up to 2.6 times between regions. To characterize the distribution of stathmin within the brain, its cellular localization was analyzed by immunocytochemistry. Highly immunoreactive neurons and oligodendrocytes were observed, and stathmin immunoreactivity was localized to the perikaryon and all processes, but not the nucleus. Most brain and spinal cord cell groups showed stathmin immunoreactivity, although the extent and intensity of labeling differed largely from one place to another. Particularly numerous stathmin‐immunoreactive neuronal cell bodies were found in the pyriform, cingulate, and neocortex, as well as in many cholinergic nuclei of the basal forebrain and brainstem, in the medial thalamus, in various brainstem nuclei, in the dorsalmost layers of the spinal cord, and in brain areas lacking a blood‐brain barrier to macromolecules. In addition to neuronal populations, stathmin‐antibodies intensely labeled choroid plexuses. Many other brain regions exhibited moderate neuronal immunostaining. The distribution of stathmin‐immunoreactive processes was in some areas relatively heterogeneous. Intense immunoreactivity was observed in some fiber tracts (corpus callosum, anterior commissure, inferior cerebellar peduncle, etc.) but was missing in others (internal capsule, posterior commissure, etc.). Some brain areas rich in immunoreactive neurons also displayed an intense immunoreactivity of the neuropile, whereas others contained either immunoreactive cells or fibers. In the human brain, stathmin immunostaining occurred in many areas, corresponding to those identified in the rat, with the exception of the cerebral cortex, the hippocampal fascia dentata, and the substantia nigra. The present results support our suggestion that, in addition
ISSN:0021-9967
1096-9861
DOI:10.1002/cne.903370410