Enzymatic and nonenzymatic dehydration reactions of L-arogenate

L-Arogenate, an immediate precursor of either L-tyrosine, L-phenylalanine, or both in many microorganisms and plants, may undergo two types of dehydration reactions that yield products of increased stability. Under acidic conditions, a facile aromatization attended by loss of the C-4 hydroxyl and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1985-03, Vol.24 (7), p.1607-1612
Hauptverfasser: ZAMIR, L. O, TIBERIO, R, FISKE, M, BERRY, A, JENSEN, R. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:L-Arogenate, an immediate precursor of either L-tyrosine, L-phenylalanine, or both in many microorganisms and plants, may undergo two types of dehydration reactions that yield products of increased stability. Under acidic conditions, a facile aromatization attended by loss of the C-4 hydroxyl and the C-1 carboxyl moieties results in quantitative conversion to L-phenylalanine. When aromatization was largely prevented by maintaining pH in the range of 7.5-12, a second dehydration reaction occurred in which the alanyl side chain and the carboxyl group at C-1 formed a lactam ring to yield spiro-arogenate. The latter reaction occurs at 100 degrees C, roughly 50% conversion being obtained in 2 h. The product formed from L-arogenate was authentic spiro-arogenate, as demonstrated by high-performance liquid chromatography and thin-layer chromatography identification procedures. Further confirmation was obtained by 1H nuclear magnetic resonance, ultraviolet spectroscopy, and mass spectrometry. Thus far, the conversion of L-arogenate to spiro-arogenate is not known to be enzyme catalyzed. The other dehydratase reaction, however, is catalyzed in nature by an enzyme denoted arogenate dehydratase. An improved assay is described for this in which [3H]dansyl derivatives of L-arogenate (substrate) and L-phenylalanine (product) are separated by using bidimensional thin-layer chromatography. The radioactive reaction product is then quantitated. This assay was used to study partially purified arogenate dehydratase from Pseudomonas diminuta, an organism that depends upon the arogenate pathway for L-phenylalanine biosynthesis.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00328a006