Leukemia inhibitory factor mediates an injury response but not a target-directed developmental transmitter switch in sympathetic neurons
Leukemia inhibitory factor (LIF; also known as cholinergic differentiation factor) is a multifunctional cytokine that affects neurons, as well as many other cell types. To examine its neuronal functions in vivo, we have used LIF-deficient mice. In culture, LIF alters the transmitter phenotype of sym...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 1993-12, Vol.11 (6), p.1175-1185 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Leukemia inhibitory factor (LIF; also known as cholinergic differentiation factor) is a multifunctional cytokine that affects neurons, as well as many other cell types. To examine its neuronal functions in vivo, we have used LIF-deficient mice. In culture, LIF alters the transmitter phenotype of sympathetic neurons, inducing cholinergic function, reducing noradrenergic function, and altering neuropeptide expression. In vivo, a noradrenergic to cholinergic switch occurs in the developing sweat gland innervation, and changes in neuropeptide phenotype occur in axotomized adult ganglia. We find that the gland innervation of LIF-deficient mice is indistinguishable from normal. In contrast, neuropeptide induction in ganglia cultured as explants or axotomized in situ is significantly suppressed in LIF-deficient mice. Thus, LIF plays a role in transmitter changes induced by axotomy but not by developmental interactions with sweat glands. |
---|---|
ISSN: | 0896-6273 1097-4199 |
DOI: | 10.1016/0896-6273(93)90229-K |