Role of cytochrome P4502D6 in the metabolism of brofaromine : a new selective MAO-A inhibitor

The metabolic fate of brofaromine (CGP 11 305 A), a new, reversible, selective MAO-A inhibitor, has been assessed in poor (PM) and extensive (EM) metabolizers of debrisoquine. Compared to EM, PM had significantly longer t1/2 (136%) and larger AUC(0-infinity) (110%) of the parent compound brofaromine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of clinical pharmacology 1993-10, Vol.45 (3), p.265-269
Hauptverfasser: FEIFEL, N, KUCHER, K, FUCHS, L, JEDRYCHOWSKI, M, SCHMIDT, E, ANTONIN, K.-H, BIECK, P. R, GLEITER, C. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The metabolic fate of brofaromine (CGP 11 305 A), a new, reversible, selective MAO-A inhibitor, has been assessed in poor (PM) and extensive (EM) metabolizers of debrisoquine. Compared to EM, PM had significantly longer t1/2 (136%) and larger AUC(0-infinity) (110%) of the parent compound brofaromine and a lower Cmax (69%) and AUC (0-72 h) (40%) of its O-desmethyl metabolite. The mean metabolite/substrate ratio (based on urine excretion) was about 6-times greater in EM than in PM. Treatment with quinidine converted all EM into phenocopies of PM. All pharmacokinetic parameters of brofaromine and O-desmethyl-brofaromine in EM treated with quinidine were similar to those of untreated PM, including the metabolite/substrate ratio. Quinidine treatment of PM did not alter the pharmacokinetics of brofaromine or of its metabolite, nor the metabolite/substrate ratio. The results indicate a role for the debrisoquine type of oxidation polymorphism in the O-demethylation and pharmacokinetics of brofaromine.
ISSN:0031-6970
1432-1041
DOI:10.1007/BF00315394