O6-Methylguanine in DNA inhibits replication in vitro by human cell extracts

To study the effects of methylation damage on DNA replication in vitro, the plasmid pSVori containing the SV40 origin of replication was reacted with N-methyl-N-nitrosourea and used as a substrate for SV40 T antigen dependent replication by HeLa cell extracts. The plasmid was methylated with a range...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1993-12, Vol.32 (49), p.13664-13672
Hauptverfasser: Ceccotti, Sabrina, Dogliotti, Eugenia, Gannon, Julian, Karran, Peter, Bignami, Margherita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To study the effects of methylation damage on DNA replication in vitro, the plasmid pSVori containing the SV40 origin of replication was reacted with N-methyl-N-nitrosourea and used as a substrate for SV40 T antigen dependent replication by HeLa cell extracts. The plasmid was methylated with a range of N-methyl-N-nitrosourea concentrations that introduced an average of 0.3-2.5 O6-methylguanine and equal amounts of 3-methyladenine lesions per DNA molecule. When methylated plasmid was incubated with extract of Mex-HeLaMR cells under conditions favoring DNA replication, an impairment of replication was observed as the accumulation of incompletely replicated form II plasmid molecules. These extracts simultaneously performed a T antigen independent, DpnI-sensitive DNA repair synthesis that increased with increasing DNA damage. Subtraction of this repair DNA synthesis revealed that methylation inhibited overall replication. At low levels of methylation (< or = 1 O6-methylguanine and < or = 1 3-methyladenine lesion per plasmid), inhibition was transient, while more extensive damage resulted in apparently irreversible inhibition of replication. Removal of O6-methylguanine by pretreatment of the methylated plasmid with purified human O6-methylguanine-DNA methyltransferase restored replication to almost normal levels. When the methylated plasmid was replicated by extracts of Mex+ HeLaS3 cells proficient in the repair of O6-methylguanine, a lower level of inhibition and less repair DNA synthesis was observed. The inhibition of DNA synthesis and the stimulation of repair DNA synthesis are thus both largely due to the presence of O6-methylguanine in DNA.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00212a035