A Glial-Specific Voltage-Sensitive Na Channel Gene Maps Close to Clustered Genes for Neuronal Isoforms on Mouse Chromosome 2
A variety of glial cell types express saxitoxin (STX)-binding voltage-sensitive Na channels (1,2), although the possible role of impulse conduction in these cells is not understood. Gautron et al. (1992) recently identified a 7.5 kb species of mRNA in type 1 astrocytes cultured from rat brain cerebr...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 1993-11, Vol.197 (1), p.100-104 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A variety of glial cell types express saxitoxin (STX)-binding voltage-sensitive Na channels (1,2), although the possible role of impulse conduction in these cells is not understood. Gautron et al. (1992) recently identified a 7.5 kb species of mRNA in type 1 astrocytes cultured from rat brain cerebrum that hybridized with a "common" Na channel probe but not with brain isoform-specific cDNA probes. Sequence data from cloned cDNAs demonstrate that it encodes a structurally atypical Na channel isoform. We have prepared a cDNA probe specific for a portion of subunit domain IV of the glial channel and mapped the location of the corresponding gene (Scn7a) to mouse chromosome 2. The Scn7a gene mapped 0.9 (±0.9) cM distal to the Gcg locus; the location of the corresponding human gene (SCN7A) is predicted to be in the q36-q37 region of chromosome 2. This site lies just outside a cluster of genes for the brain-specific Na channel isoforms RI, RII and RIII which map proximal to Gcg (17). The presence of at least four genes from two distinct Na channel subfamilies suggests that multiple genetic defects for central and peripheral nervous system disorders ultimately may be linked to this area. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1006/bbrc.1993.2446 |