Evidence for an essential arginine residue in the active site of Escherichia coli 2-keto-4-hydroxyglutarate aldolase. Modification with 1,2-cyclohexanedione
Treatment of homogeneous preparations of Escherichia coli 2-keto-4-hydroxyglutarate aldolase with 1,2-cyclohexanedione, 2,3-butanedione, phenylglyoxal, or 2,4-pentanedione results in a time- and concentration-dependent loss of enzymatic activity; the kinetics of inactivation are pseudo-first order....
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1985-05, Vol.260 (9), p.5480-5485 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Treatment of homogeneous preparations of Escherichia coli 2-keto-4-hydroxyglutarate aldolase with 1,2-cyclohexanedione, 2,3-butanedione, phenylglyoxal, or 2,4-pentanedione results in a time- and concentration-dependent loss of enzymatic activity; the kinetics of inactivation are pseudo-first order. Cyclohexanedione is the most effective modifier; a plot of log (1000/t 1/2) versus log [cyclohexanedione] gives a straight line with slope = 1.1, indicating that one molecule of modifier reacts with each active unit of enzyme. The kinetics of inactivation are first order with respect to cyclohexanedione, suggesting that the loss of activity is due to modification of 1 arginine residue/subunit. Controls establish that this inactivation is not due to modifier-induced dissociation or photoinduced structural alteration of the aldolase. The same Km but decreased Vmax values are obtained when partially inactivated enzyme is compared with native. Amino acid analyses of 95% inactivated aldolase show the loss of 1 arginine/subunit with no significant change in other amino acid residues. Considerable protection against inactivation is provided by the substrates 2-keto-4-hydroxyglutarate and pyruvate (75 and 50%, respectively) and to a lesser extent (40 and 35%, respectively) by analogs like 2-keto-4-hydroxybutyrate and 2-keto-3-deoxyarabonate. In contrast, formaldehyde or glycolaldehyde (analogs of glyoxylate) under similar conditions show no protective effect. These results indicate that an arginine residue is required for E. coli 2-keto-4-hydroxyglutarate aldolase activity; it most likely participates in the active site of the enzyme by interacting with the carboxylate anion of the pyruvate-forming moiety of 2-keto-4-hydroxyglutarate. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/S0021-9258(18)89047-0 |