Molecular cloning and characterization of PKC iota, an atypical isoform of protein kinase C derived from insulin-secreting cells
The protein kinase C (PKC) family of serine-threonine kinases comprises at least eight members. These are differentially expressed, show varying affinities for activators such as Ca2+ and lipid species, and are therefore thought to play wide-ranging roles in the regulation of such cellular processes...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1993-11, Vol.268 (32), p.24296-24302 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The protein kinase C (PKC) family of serine-threonine kinases comprises at least eight members. These are differentially expressed,
show varying affinities for activators such as Ca2+ and lipid species, and are therefore thought to play wide-ranging roles
in the regulation of such cellular processes as differentiation, growth, and secretion. The aim of this study was to identify
new PKC isoforms in the insulin-secreting cell line RINm5F that might be activated by the alterations in lipid metabolism
that accompany nutrient-stimulated insulin release. Fragments of cDNA, derived from RINm5F cell mRNA, were amplified by the
polymerase chain reaction using degenerate oligonucleotide primers corresponding to highly conserved regions in the catalytic
domains of all known PKCs. A novel sequence generated by this approach was subsequently used to screen cDNA libraries. The
entire 587-amino acid coding region of a new PKC isoform, PKC iota, was deduced from two overlapping clones isolated from
a human kidney cDNA library. The amino acid sequence of PKC iota showed greatest homology to PKC zeta, with 72% identity overall
rising to 84% in the catalytic domain. In contrast, the homology of PKC iota to the other isoforms was less pronounced, with
< 53% identity even in the highly conserved catalytic region. Further similarities between PKC zeta and PKC iota included
a highly conserved pseudosubstrate sequence, the absence of an apparent Ca(2+)-binding region, and the presence of only one
cysteine-rich, zinc finger-like domain. Northern blot analysis, using the full-length PKC iota clone as a probe, revealed
a single 4.6-kilobase transcript present predominantly in lung and brain, but also expressed at lower levels in many tissues
including pancreatic islets. In CHO-K1 cells stably expressing the PKC iota cDNA under the human beta-actin promoter, the
protein was detected as a 65-kDa band by Western blotting using an antibody to the COOH terminus of PKC zeta (conserved in
PKC iota). Extracts of transfected CHO-K1 cells also displayed a significantly increased kinase activity using myelin basic
protein as a substrate. The results suggest that PKC iota should be included in the atypical subgroup of PKCs whose definitive
member is PKC zeta. As such, PKC iota is unlikely to be activated by the diacylglycerol that is derived from phosphoinositide
hydrolysis, but might be a target for novel lipid activators that are elevated during nutrient-stimulated insulin secretion. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/s0021-9258(20)80525-0 |