Expression of the metabotropic glutamate receptor mGluR1α and the ionotropic glutamate receptor GluR1 in the brain during the postnatal development of normal mouse and in the cerebellum from mutant mice

Expression of the metabotropic glutamate receptor type 1α (mGluR1α) and the non‐N‐methyl‐D‐aspartate (NMDA) ionotropic glutamate receptor type 1 (GluR1) in mouse brain was investigated using the antibodies raised against the synthetic peptides corresponding to their C‐terminal amino acid sequences....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience research 1993-09, Vol.36 (1), p.19-32
Hauptverfasser: Ryo, Y., Miyawaki, A., Furuichi, T., Mikoshiba, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Expression of the metabotropic glutamate receptor type 1α (mGluR1α) and the non‐N‐methyl‐D‐aspartate (NMDA) ionotropic glutamate receptor type 1 (GluR1) in mouse brain was investigated using the antibodies raised against the synthetic peptides corresponding to their C‐terminal amino acid sequences. Both receptor proteins are glycosylated predominantly in an asparagine‐linked manner, and are abundant in post‐synaptic membranes. We showed that mGluR1α and GluR1 expression within the first 3 postnatal weeks undergoes dramatic changes in time and space, i.e., in the hippocampus and cerebellum. These spatio‐temporal expression patterns appear to be correlated with the postnatal ontogenesis and establishment of the glutamatergic neurotransmission system in the hippocampus and cerebellum, cell migration, dendritic and axonal growth, spine formation, and synaptogenesis. In the adult cerebellum, mGluR1α is intensely expressed in Purkinje neurons and GluR1 in Bergmann glial cells. Both receptors are expressed to a fair degree in weaver mutant cerebellum despite granule cell degeneration. However, the intrinsic expression levels of both mGluR1α and GluR1 are markedly reduced in the cerebellum of the Purkinje cell‐deficient and underdeveloped mutant mice, Purkinje‐cell‐degeneration, Lurcher, and staggerer, suggesting that GluR1 expression in Bergmann glia cells may be correlated with the sustained interaction with adjacent Purkinje neurons. © 1993 Wiley‐Liss, Inc.
ISSN:0360-4012
1097-4547
DOI:10.1002/jnr.490360104