A computer heart model incorporating anisotropic propagation: I. Model construction and simulation of normal activation

Present-day computer models of the entire heart, capable of simulating the activation isochrones and subsequently the body surface potentials, focus on considerations of myocardial anisotropy. Myocardial anisotropy enters into play at two levels, first by affecting the spatial pattern of activation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electrocardiology 1993-10, Vol.26 (4), p.245-261
Hauptverfasser: Lorange, Michel, Gulrajani, Ramesh M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Present-day computer models of the entire heart, capable of simulating the activation isochrones and subsequently the body surface potentials, focus on considerations of myocardial anisotropy. Myocardial anisotropy enters into play at two levels, first by affecting the spatial pattern of activation owing to faster propagation along cardiac fibers and second by altering the equivalent dipole sources used to calculate the surface potentials. The construction of a new and detailed model of the human heart is described, based on 132 transverse sections obtained following a computed tomography scan of a frozen human heart whose chambers were inflated with pressurized air. The entire heart anatomy was reconstructed as a three-dimensional array of approximately 250,000 points spaced 1 mm apart. Conduction in the thin-walled atria was assumed isotropic from the sinus node region to the atrioventricular node, where it was subject to a 50 ms delay. A two-tier representation of the specialized conduction system was used, with the initial segments of the left and right bundles represented by a system of cables that feeds to the second tier, which is a sheet of conduction tissue representing the distal Purkinje system. Approximately 1,120 “Purkinje-myocardium” junctions present at the terminations of the cables and sprinkled uniformly over the sheet, transmit the excitation to the ventricles. A stylized representation of myocardial fiber rotation was incorporated into the ventricles and the local fiber direction at each model point used to compute the velocity of propagation to its nearest neighbors. Accordingly, the activation times of the entire ventricular myocardium could be determined using the 1,120 or so Purkinje-myocardium junctions as start points. While myocardial anisotropy was considered in the ventricular propagation process, it was ignored in the computation of the equivalent dipole sources. Nevertheless, the computed electrocardiogram, vectorcardiogram, and body surface potential maps obtained with the new heart model properly positioned inside an inhomogeneous torso model were all within normal limits.
ISSN:0022-0736
1532-8430
DOI:10.1016/0022-0736(93)90047-H