Using coordinate transformation of Navier–Stokes equations to solve flow in multiple helical geometries
Recent research on small amplitude helical pipes for use as bypass grafts and arterio-venous shunts, suggests that mixing may help prevent occlusion by thrombosis. It is proposed here that joining together two helical geometries, of different helical radii, will enhance mixing, with only a small inc...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2010-08, Vol.234 (7), p.2069-2079 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent research on small amplitude helical pipes for use as bypass grafts and arterio-venous shunts, suggests that mixing may help prevent occlusion by thrombosis. It is proposed here that joining together two helical geometries, of different helical radii, will enhance mixing, with only a small increase in pressure loss. To determine the velocity field, a coordinate transformation of the Navier–Stokes equations is used, which is then solved using a 2-D high-order mesh combined with a Fourier decomposition in the periodic direction. The results show that the velocity fields in each component geometry differ strongly from the corresponding solution for a single helical geometry. The results suggest that, although the mixing behaviour will be weaker than an idealised prediction indicates, it will be improved from that generated in a single helical geometry. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/j.cam.2009.08.065 |