Microbial biosurfactants and hydrolytic enzymes mediates in situ development of stable supra-molecular assemblies in fatty acids released from triglycerides
The present study demonstrates in situ formation of multilamellar stable vesicles (MLSVs) of fatty acids released during the growth of microorganisms in the presence of triglycerides. Release of lipase during initial phase of growth hydrolyzes the triglycerides and release free fatty acids (mono or...
Gespeichert in:
Veröffentlicht in: | Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2010-07, Vol.78 (2), p.200-207 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present study demonstrates
in situ formation of multilamellar stable vesicles (MLSVs) of fatty acids released during the growth of microorganisms in the presence of triglycerides. Release of lipase during initial phase of growth hydrolyzes the triglycerides and release free fatty acids (mono or diglycerides) and glycerol. By extending the growth and the prevailing composition of media (unspent nutrients, salts, pH of the medium, biosurfactants, fatty acids, glycerol) and agitation transforms free fatty acids to MLSV of both cylindrical and spherical macroscopic structures via micelle formation with in 240
h of incubation. Cross-sectional view and SEM analysis of macroscopic structures reveal the existence of continuous multilayering. Thermo-gravimetric analysis illustrates the stability of the vesicles. FT-IR analysis emphasizes the presence of amide linkages, responsible for self-assembly processes. Schematic representation of formation of MLSV demonstrated for further understanding. Additional exploration on MLSV formation in arteries and the relationship between MLSV and
in situ plaque formation by the components of blood in the arteries are schematically explained and submitted as supporting information (SI-2). |
---|---|
ISSN: | 0927-7765 1873-4367 |
DOI: | 10.1016/j.colsurfb.2010.03.001 |