Abnormal grain growth of Goss grains in Fe–3% Si steel driven by sub-boundary-enhanced solid-state wetting: Analysis by Monte Carlo simulation
The selective abnormal grain growth (AGG) of Goss grains in Fe–3% Si steel was investigated using a parallel Monte Carlo (MC) simulation based on the concept of sub-boundary-enhanced solid-state wetting. Goss grains that contain low angle sub-boundaries will induce solid-state wetting against grain...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2010-08, Vol.58 (13), p.4414-4423 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The selective abnormal grain growth (AGG) of Goss grains in Fe–3% Si steel was investigated using a parallel Monte Carlo (MC) simulation based on the concept of sub-boundary-enhanced solid-state wetting. Goss grains that contain low angle sub-boundaries will induce solid-state wetting against grain boundaries in the matrix that exhibit a moderate variation in grain boundary energy, as expected from the variation in boundary type. AGG generates a sharp Goss texture provided that only Goss-oriented grains have the required sub-grain structure to grow selectively by sub-boundary-induced wetting and that other orientations lack the required content of low angle boundaries. This behavior is shown in three-dimensional MC simulations of microstructure evolution with textures and grain boundary distributions matched to experimental data. |
---|---|
ISSN: | 1359-6454 1873-2453 |
DOI: | 10.1016/j.actamat.2010.04.038 |