An Asymmetrically Surface-Modified Graphene Film Electrochemical Actuator

It is critically important to develop actuator systems for diverse needs ranging from robots and sensors to memory chips. The advancement of mechanical actuators depends on the development of new materials and rational structure design. In this study, we have developed a novel graphene electrochemic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2010-10, Vol.4 (10), p.6050-6054
Hauptverfasser: Xie, Xuejun, Qu, Liangti, Zhou, Ce, Li, Yan, Zhu, Jia, Bai, Hua, Shi, Gaoquan, Dai, Liming
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is critically important to develop actuator systems for diverse needs ranging from robots and sensors to memory chips. The advancement of mechanical actuators depends on the development of new materials and rational structure design. In this study, we have developed a novel graphene electrochemical actuator based on a rationally designed monolithic graphene film with asymmetrically modified surfaces. Hexane and O2 plasma treatment were applied to the opposite sides of graphene film to induce the asymmetrical surface properties and hence asymmetrical electrochemical responses, responsible for actuation behaviors. The newly designed graphene actuator demonstrated here opens a new way for actuator fabrication and shows the potential of graphene film for applications in various electromechanical systems.
ISSN:1936-0851
1936-086X
DOI:10.1021/nn101563x