Centromeric DNA cloned from functional kinetochore fragments in mitotic cells with unreplicated genomes

Treatment of cells arrested in the cell cycle at the G1/S-phase boundary with 5 mM caffeine induces premature mitosis, resulting in chromosomal fragmentation and detachment of centromere-kinetochore fragments, which are subsequently attached to the mitotic spindle and segregated in anaphase. Taking...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 1993-06, Vol.105 (2), p.359-367
Hauptverfasser: OUSPENSKI, I. I, BRINKLEY, B. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Treatment of cells arrested in the cell cycle at the G1/S-phase boundary with 5 mM caffeine induces premature mitosis, resulting in chromosomal fragmentation and detachment of centromere-kinetochore fragments, which are subsequently attached to the mitotic spindle and segregated in anaphase. Taking advantage of this in vivo separation of the centromere, we have developed a procedure for isolation of a centromere-enriched fraction of mitotic chromatin. Using this method, we have isolated and cloned DNA from the centromere-enriched material of Chinese hamster cells. One of the clones thus obtained was characterized in detail. It contains 6 kb of centromere-associated sequence that exhibits no recognizable homology with other mammalian centromeric sequences and is devoid of any extensive repetitive structure. This sequence is present in a single copy on chromosome 1 and is species-specific. Distinctive features of the clone include the presence of several A+T-rich regions and clusters of multiple topoisomerase II consensus cleavage sites and other sequence motifs characteristic of nuclear matrix-associated regions. We hypothesize that these features might be related to the more compact packaging of centromeric chromatin in interphase nuclei and mitotic chromosomes.
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.105.2.359