Site-Specific Differences in Latency Intervals during Biventricular Pacing: Impact on Paced QRS Morphology and Echo-Optimized V-V Interval

Objective:  To investigate differences in latency intervals during right ventricular (RV) pacing and left ventricular (LV) pacing from the (postero‐)lateral cardiac vein in cardiac resynchronization therapy (CRT) patients and their relationship to echo‐optimized interventricular (V‐V) intervals and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pacing and clinical electrophysiology 2010-11, Vol.33 (11), p.1382-1391
Hauptverfasser: HERWEG, BENGT, ALI, RIAS, ILERCIL, ARZU, MADRAMOOTOO, CHRIS, CUTRO, RAY, WESTON, MARK W., BAROLD, S. SERGE
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective:  To investigate differences in latency intervals during right ventricular (RV) pacing and left ventricular (LV) pacing from the (postero‐)lateral cardiac vein in cardiac resynchronization therapy (CRT) patients and their relationship to echo‐optimized interventricular (V‐V) intervals and paced QRS morphology. Methods:  We recorded digital 12‐lead electrocardiograms in 40 CRT patients during RV, LV, and biventricular pacing at three output settings. Stimulus‐to‐earliest QRS deflection (latency) intervals were measured in all leads. Echocardiographic atrioventricular (AV) and V‐V optimization was performed using aortic velocity time integrals. Results:  Latency intervals were longer during LV (34 ± 17, 29 ± 15, 28 ± 15 ms) versus RV apical pacing (17 ± 8, 15 ± 8, 13 ± 7 ms) for threshold, threshold ×3, and maximal output, respectively (P < 0.001), and shortened with increased stimulus strength (P < 0.05). The echo‐optimized V‐V interval was 58 ± 31 ms in five of 40 (12%) patients with LV latency ≥ 40 ms compared to 29 ± 20 ms in 35 patients with LV latency < 40 ms (P < 0.01). During simultaneous biventricular pacing, four of five (80%) patients with LV latency ≥ 40 ms exhibited a left bundle branch block (LBBB) pattern in lead V1 compared to three of 35 (9%) patients with LV latency < 40 ms (P < 0.01). After optimization, all five patients with LV latency ≥ 40 ms registered a dominant R wave in lead V1. Conclusions:  LV pacing from the lateral cardiac vein is associated with longer latency intervals than endocardial RV pacing. LV latency causes delayed LV activation and requires V‐V interval adjustment to improve hemodynamic response to CRT. Patients with LV latency ≥ 40 ms most often display an LBBB pattern in lead V1 during simultaneous biventricular pacing, but a right bundle branch block after V‐V interval optimization. (PACE 2010; 1382–1391)
ISSN:0147-8389
1540-8159
DOI:10.1111/j.1540-8159.2010.02882.x