Intrapulse temporal and wavelength shifts of a high-power 2.1-µm Ho:YAG laser and their potential influence on atmospheric lidar measurements

A high-power, flash-lamp-pumped, Q-switched Ho:YAG laser has been developed to produce up to 150 mJ in a 100-ns Q-switched pulse. The Ho laser was initially used in a direct detection lidar-differential absorption lidar (DIAL) system to measure vertical density profiles of aerosols and water vapor i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 1994-11, Vol.33 (33), p.7747-7753
Hauptverfasser: Vaidyanathan, M, Killinger, D K
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A high-power, flash-lamp-pumped, Q-switched Ho:YAG laser has been developed to produce up to 150 mJ in a 100-ns Q-switched pulse. The Ho laser was initially used in a direct detection lidar-differential absorption lidar (DIAL) system to measure vertical density profiles of aerosols and water vapor in the atmosphere. It was found, however, that the Ho laser operated simultaneously on two closely spaced spectral emission wavelengths (2.090 and 2.097 µm) and that the distribution of energy between the two wavelengths could change significantly on time scales of several seconds to minutes. Such intrapulse temporal and wavelength shifts were found to alter the atmospheric lidar return significantly because one of the laser lines coincided with a water vapor absorption line in the atmosphere. This laser spectral output problem was overcome by the use of intracavity étalons that controlled the laser spectral-temporal characteristics but reduced the laser output energy to approximately 75 mJ/pulse in a 100-ns pulse length. These results are important as they serve to point out the difficulties of developing and using a high-power 2.1- µm Ho laser for atmospheric lidar when high-resolution spectral and temporal characteristics can significantly influence the lidar return and be misinterpreted as resulting from atmospheric signals.
ISSN:1559-128X
DOI:10.1364/AO.33.007747