Signal Pathway Regulation of Interleukin-8-Induced Actin Polymerization in Neutrophils

Interleukin-8 (IL-8), a recently described peptide cytokine, is a neutrophil chemoattractant and activator that exerts effects similar to fMLP, yet their receptors and their roles in pathophysiology differ. The effect of IL-8 on the neutrophil cytoskeleton has not been well studied; therefore, we co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 1993-10, Vol.82 (8), p.2546-2551
Hauptverfasser: Sham, Ronald L., Phatak, Pradyumna D., Ihne, Trenton P., Abboud, Camille N., Packman, Charles H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interleukin-8 (IL-8), a recently described peptide cytokine, is a neutrophil chemoattractant and activator that exerts effects similar to fMLP, yet their receptors and their roles in pathophysiology differ. The effect of IL-8 on the neutrophil cytoskeleton has not been well studied; therefore, we compared and contrasted the effects of IL-8 and fMLP on neutrophil actin conformation and on the signal pathway regulation of actin responses. IL-8 caused a rapid, dose-dependent increase in neutrophil F-actin content within 30 seconds. The maximum increase was twofold. These changes were accompanied by the development of F-ac-tin-rich pseudopods, as noted with fluorescence microscopy and scanning electron microscopy. Selected biochemical inhibitors were used to study the regulation of the IL-8-induced actin changes. Incubation of neutrophils with 2 μg/mL pertussis toxin resulted in a 67% inhibition of the IL-8-induced F-actin increase. The protein kinase C (PKC) inhibitors, staurosporine and H7, did not inhibit the increase in F-actin caused by IL-8. IL-8 caused a rapid increase in neutrophil intracellular calcium that could be completely inhibited by the chelating agent 1,2-bis(o-aminophenoxy)ethane-N,N-N, N'-tetraacetic acid (BAPTA). However, BAPTA-treated neutrophils retained the ability to increase F-actin in response to IL-8. Similar results were seen with fMLP, indicating that, similar to fMLP, the IL-8-induced actin response is mediated through pertussis-toxin-sensitive G-proteins but is neither dependent on PKC nor increases in cytosolic calcium. Thus, although IL-8 and fMLP exert their effects on neutrophils through different receptors, the signal transduction pathways used and the effects on actin conformation and pseudopod formation are similar.
ISSN:0006-4971
1528-0020
DOI:10.1182/blood.V82.8.2546.2546