Preconditioning against myocardial dysfunction after ischemia and reperfusion by an alpha 1-adrenergic mechanism
Preconditioning may find ready applicability in humans facing scheduled global cardiac ischemia-reperfusion (IR) during bypass or transplantation, where such a maneuver is feasible before arrest. Our objective was to delineate and exploit the endogenous preconditioning mechanism triggered by transie...
Gespeichert in:
Veröffentlicht in: | Circulation research 1993-10, Vol.73 (4), p.656-670 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Preconditioning may find ready applicability in humans facing scheduled global cardiac ischemia-reperfusion (IR) during bypass or transplantation, where such a maneuver is feasible before arrest. Our objective was to delineate and exploit the endogenous preconditioning mechanism triggered by transient ischemia (TI) and thereby attenuate myocardial postischemic mechanical dysfunction by clinically acceptable means. Preconditioning by 2 minutes of TI followed by 10 minutes of normal perfusion protected isolated rat left ventricle function assessed after 20 minutes of global, 37 degrees C ischemia and 40 minutes of reperfusion. Final recovery of developed pressure (DP) was improved (91.5 +/- 1.9% of equilibration DP versus unconditioned IR control, 57.4 +/- 2.4%, P < .01) and was accompanied by increased contractility (+/- dP/dt). Norepinephrine release increased after TI, and reserpine pretreatment abolished TI preconditioning. This suggests that endogenous norepinephrine mediates functional preconditioning in rat. Brief pretreatment (2 minutes) with exogenous norepinephrine reproduced the protection (89.1 +/- 1.4%) of postischemic function. Functional protection persisted after the hemodynamic effects had resolved. Norepinephrine-induced preconditioning was simulated by phenylephrine and blocked by alpha 1-adrenergic receptor antagonist. TI preconditioning was similarly lost after selective alpha 1-adrenergic receptor blockade. We conclude that transient ischemic preconditioning is mediated by the sympathetic neurotransmitter release and alpha 1-adrenergic receptor stimulation. Although the postreceptor mechanism remains unclear, functional protection after IR does not seem related to the magnitude of ATP depletion and elevation of resting pressure during ischemia. Rather, the endogenous mechanisms facilitate both recovery of mechanical function and ATP repletion during reperfusion. |
---|---|
ISSN: | 0009-7330 1524-4571 |
DOI: | 10.1161/01.res.73.4.656 |