Fabrication of a Planar Zwitterionic Lipid Bilayer on Titanium Oxide

There is great demand to fabricate planar phosphlipid bilayers on biocompatible materials. The preferred method of forming bilayers on these substrates is the spontaneous adsorption and rupture of phospholipid vesicles. However, in the case of titanium oxide, model vesicles composed solely of zwitte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2010-10, Vol.26 (20), p.15706-15710
Hauptverfasser: Cho, Nam-Joon, Frank, Curtis W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is great demand to fabricate planar phosphlipid bilayers on biocompatible materials. The preferred method of forming bilayers on these substrates is the spontaneous adsorption and rupture of phospholipid vesicles. However, in the case of titanium oxide, model vesicles composed solely of zwitterionic phospholipids do not follow this self-assembly pathway under physiological conditions, prompting the use of complex bilayer materials and less-facile methods. Herein, we report a novel pH-based strategy for fabricating zwitterionic bilayers on titanium oxide in a simple and robust manner. Depending on the pH conditions under which lipid vesicles adsorb onto titanium oxide, quartz crystal microbalance-dissipation (QCM-D) monitoring demonstrated that the self-assembly pathway can in fact result in planar bilayer formation. The pH of the solution could then be adjusted to physiological levels with no effect on the mass and viscoelastic properties of the bilayer. Moreover, fluorescence recovery after photobleaching (FRAP) measurements indicated a high degree of lateral lipid diffusivity within the bilayer at physiological pH, commensurate with its role as a cell membrane mimic. Compared to existing protocols, this strategy permits the fabrication of a more diverse array of planar bilayers on titanium oxide by tuning the self-assembly pathway of lipid vesicle adsorption onto solid substrates.
ISSN:0743-7463
1520-5827
DOI:10.1021/la101523f