New diagnostic EEG markers of the Alzheimer’s disease using visibility graph
A new chaos–wavelet approach is presented for electroencephalogram (EEG)-based diagnosis of Alzheimer’s disease (AD) employing a recently developed concept in graph theory, visibility graph (VG). The approach is based on the research ideology that nonlinear features may not reveal differences betwee...
Gespeichert in:
Veröffentlicht in: | Journal of Neural Transmission 2010-09, Vol.117 (9), p.1099-1109 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new chaos–wavelet approach is presented for electroencephalogram (EEG)-based diagnosis of Alzheimer’s disease (AD) employing a recently developed concept in graph theory, visibility graph (VG). The approach is based on the research ideology that nonlinear features may not reveal differences between AD and control group in the band-limited EEG, but may represent noticeable differences in certain sub-bands. Hence, complexity of EEGs is computed using the VGs of EEGs and EEG sub-bands produced by wavelet decomposition. Two methods are employed for computation of complexity of the VGs: one based on the power of scale-freeness of a graph structure and the other based on the maximum eigenvalue of the adjacency matrix of a graph. Analysis of variation is used for feature selection. Two classifiers are applied to the selected features to distinguish AD and control EEGs: a Radial Basis Function Neural Network (RBFNN) and a two-stage classifier consisting of Principal Component Analysis (PCA) and the RBFNN. After comprehensive statistical studies, effective classification features and mathematical markers were discovered. Finally, using the discovered features and a two-stage classifier (PCA-RBFNN), a high diagnostic accuracy of 97.7% was obtained. |
---|---|
ISSN: | 0300-9564 1435-1463 |
DOI: | 10.1007/s00702-010-0450-3 |