Drainage effects on stream nitrate-N and hydrology in south-central Minnesota (USA)

Excessive nitrate-N in south-central Minnesota ditches and streams is related to land-use change, and may be contributing to the development of the zone of hypoxia in the Gulf of Mexico. Intensive land-use (agricultural management) has progressively increased as subsurface drainage has improved crop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental monitoring and assessment 2004-02, Vol.91 (1-3), p.183-198
Hauptverfasser: MAGNER, J. A, PAYNE, G. A, STEFFEN, L. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Excessive nitrate-N in south-central Minnesota ditches and streams is related to land-use change, and may be contributing to the development of the zone of hypoxia in the Gulf of Mexico. Intensive land-use (agricultural management) has progressively increased as subsurface drainage has improved crop productivity over the past 25 years. We have examined water at varying scales for delta18O and, nitrate-N concentrations. Additionally, analysis of annual peak flows, and channel geomorphic features provided a measure of hydrologic change. Laboratory and field results indicate that agricultural drainage has influenced riverine source waters, concentrations of nitrate-N, channel dimensions and hydrology in the Blue Earth River (BER) Basin. At the mouth of the BER shallow ground water comprises the largest source water component. The highest nitrate-N concentrations in the BER and tributaries typically occurred in May and June and ranged from 7-34 mg L(-1). Peak flows for the 1.01-2-yr recurrence intervals increased by 20-to-206% over the past 25 years. Geomorphic data suggest that small channels (ditches) were entrenched by design, whereas, natural that are disconnected from an accessible riparian corridor. Frequent access to a functioning riparian zone is important for denitrification.
ISSN:0167-6369
1573-2959
DOI:10.1023/B:EMAS.0000009235.50413.42