Stimulation of the cAMP system by the nitric oxide-cGMP system underlying the formation of long-term memory in an insect
The nitric oxide (NO)-cGMP signaling system and cAMP system play critical roles in the formation of multiple-trial induced, protein synthesis-dependent long-term memory (LTM) in many vertebrates and invertebrates. The relationship between the NO-cGMP system and cAMP system, however, remains controve...
Gespeichert in:
Veröffentlicht in: | Neuroscience letters 2009-12, Vol.467 (2), p.81-85 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The nitric oxide (NO)-cGMP signaling system and cAMP system play critical roles in the formation of multiple-trial induced, protein synthesis-dependent long-term memory (LTM) in many vertebrates and invertebrates. The relationship between the NO-cGMP system and cAMP system, however, remains controversial. In honey bees, the two systems have been suggested to converge on protein kinase A (PKA), based on the finding
in vitro that cGMP activates PKA when sub-optimal dose of cAMP is present. In crickets, however, we have suggested that NO-cGMP pathway operates on PKA via activation of adenylyl cyclase and production of cAMP for LTM formation. To resolve this issue, we compared the effect of multiple-trial conditioning against the effect of an externally applied cGMP analog for LTM formation in crickets, in the presence of sub-optimal dose of cAMP analog and in condition in which adenylyl cyclase was inhibited. The obtained results suggest that an externally applied cGMP analog activates PKA when sub-optimal dose of cAMP analog is present, as is suggested in honey bees, but cGMP produced by multiple-trial conditioning cannot activate PKA even when sub-optimal dose of cAMP analog is present, thus indicating that cGMP produced by multiple-trial conditioning is not accessible to PKA. We conclude that the NO-cGMP system stimulates the cAMP system for LTM formation. We propose that LTM is formed by an interplay of two classes of neurons, namely, NO-producing neurons regulating LTM formation and NO-receptive neurons that are more directly involved in the formation of long-term synaptic plasticity underlying LTM formation. |
---|---|
ISSN: | 0304-3940 1872-7972 |
DOI: | 10.1016/j.neulet.2009.10.008 |