Intracellular processing of the vesicular stomatitis virus glycoprotein and the Newcastle disease virus hemagglutinin-neuraminidase glycoprotein

The kinetics of intracellular transport of the vesicular stomatitis virus (VSV) glycoprotein (G) and the Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) glycoprotein in chicken embryo cells were compared. To assay for the appearance of pulse-labelled glycoprotein at the cell surface,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Virus research 1984, Vol.1 (3), p.225-239
Hauptverfasser: Morrison, T.G., Ward, L.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The kinetics of intracellular transport of the vesicular stomatitis virus (VSV) glycoprotein (G) and the Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) glycoprotein in chicken embryo cells were compared. To assay for the appearance of pulse-labelled glycoprotein at the cell surface, an antibody-binding assay was developed which allowed the precipitation of only those molecules on the outside surfaces of infected cells. Using this assay, it was found that pulse-labelled VSV G protein appeared at the cell surface with a half-time of approximately 27 min, while pulse-labelled NDV HN glycoprotein reached the cell surface with a half-time of approximately 78 min. To determine the transit time of these glycoproteins to trans-Golgi membranes, the kinetics of the acquisition of endoglycosidase H resistance was analyzed. The half-time of the transit of the G protein to the trans-Golgi membranes was found to be approximately 13 min while that of the HN glycoprotein was found to be approximately 60 min. Since the G protein migrates to the trans-Golgi membranes with a half-time of 13 min, and the cell surface with a half-time of 27 min, the half-time for the transit between the trans-Golgi membrane and the plasma membrane must be approximately 14 min. In a similar analysis, the half-time for the transit of the HN glycoprotein from the trans-Golgi membrane to the plasma membrane must be approximately 18 min, a time not significantly different from that of the G protein. Thus the difference in the kinetics of the intracellular transport of these two glycoproteins resides primarily in the transit from the rough endoplasmic reticulum to the trans-Golgi membranes. These results argue against a non-selective mechanism for the transport of plasma membrane glycoproteins to the cell surface.
ISSN:0168-1702
1872-7492
DOI:10.1016/0168-1702(84)90041-8