NO-releasing NSAIDs suppress NF-κB signaling in vitro and in vivo through S -nitrosylation

Abstract NO-NSAIDs are promising anticancer drugs, comprising an NSAID, an NO-releasing moiety, and a spacer linking them. Although the effect of NO-NSAIDs on a wide variety of signaling and other cellular mechanisms has been deciphered, a key question remains unanswered, that being the role of NO t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer letters 2010-12, Vol.298 (2), p.204-211
Hauptverfasser: Chattopadhyay, Mitali, Goswami, Satindra, Rodes, Deborah B, Kodela, Ravinder, Velazquez, Carlos A, Boring, Daniel, Crowell, James A, Kashfi, Khosrow
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract NO-NSAIDs are promising anticancer drugs, comprising an NSAID, an NO-releasing moiety, and a spacer linking them. Although the effect of NO-NSAIDs on a wide variety of signaling and other cellular mechanisms has been deciphered, a key question remains unanswered, that being the role of NO to the overall biological effect of these agents. It has been shown that NO can directly modify sulfhydryl residues of proteins through S -nitrosylation and induce apoptosis. We studied 3 NO-NSAIDs having a different NSAID, spacer, and NO-releasing moiety. In vitro : aspirin, NO-ASA, naproxen, and NO-naproxen inhibited HT-29 human colon cancer cell growth, the IC50 s being >5000, 192 ± 6, 2800 ± 210 and 95 ± 5 μM at 24 h, respectively. NO-Aspirin and NO-naproxen reduced NF-κB protein levels, and activated caspase-3 enzyme in a dose- and time-dependent manner. Based on the biotin switch assay, NO-ASA and NO-naproxen S -nitrosylated NF-κB p65 in a time-dependent manner. Pretreatment of the cells with carboxy-PTIO, abrogated the S -nitrosylation of NF-κB p65. In vivo : rats treated with NO-ASA, NONO-ASA, and NO-naproxen showed S -nitrosylation of NF-κB p65 in the stomach tissue, increases in plasma TNF-α, and reductions in mucosal PGE2 levels. These data provide a mechanistic role for NO and a rational for the chemopreventive effects of NO-NSAIDs.
ISSN:0304-3835
1872-7980
DOI:10.1016/j.canlet.2010.07.006