Charge-Selective Raman Scattering and Fluorescence Quenching by “Nanometal On Semiconductor” Substrates
Ag nanoparticles synthesized on n and p-type Si were shown to exhibit charge-selective surface-enhanced Raman scattering and fluorescence quenching. As revealed by electric force microscopy, the polarity and magnitude of the nanoparticle charge is controllable with the metal-semiconductor Fermi leve...
Gespeichert in:
Veröffentlicht in: | Nano letters 2010-10, Vol.10 (10), p.3880-3887 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ag nanoparticles synthesized on n and p-type Si were shown to exhibit charge-selective surface-enhanced Raman scattering and fluorescence quenching. As revealed by electric force microscopy, the polarity and magnitude of the nanoparticle charge is controllable with the metal-semiconductor Fermi level difference and nanoparticle size. It is inferred that the Fermi level alignment is dominantly contributed by the charge-induced nanoparticle voltage. Nanoparticle charging also accounts for self-inhibition of coalescence during chemical reduction, allowing strong plasmon hybridization. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/nl101480n |