The GABAergic nervous system of Caenorhabditis elegans

gamma-Aminobutyric acid (GABA) is the most abundant inhibitory neurotransmitter in vertebrates and invertebrates. GABA receptors are the target of anxiolytic, antiepileptic and antispasmodic drugs, as well as of commonly used insecticides. How does a specific neurotransmitter such as GABA control an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 1993-07, Vol.364 (6435), p.337-341
Hauptverfasser: Mclntire, Steven L, Jorgensen, Erik, Kaplan, Joshua, Horvitz, H. Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:gamma-Aminobutyric acid (GABA) is the most abundant inhibitory neurotransmitter in vertebrates and invertebrates. GABA receptors are the target of anxiolytic, antiepileptic and antispasmodic drugs, as well as of commonly used insecticides. How does a specific neurotransmitter such as GABA control animal behaviour? To answer this question, we identified all neurons that react with antisera raised against the neurotransmitter GABA in the nervous system of the nematode Caenorhabditis elegans. We determined the in vivo functions of 25 of the 26 GABAergic neurons by killing these cells with a laser microbeam in living animals and by characterizing a mutant defective in GABA expression. On the basis of the ultrastructurally defined connectivity of the C. elegans nervous system, we deduced how these GABAergic neurons act to control the body and enteric muscles necessary for different behaviours. Our findings provide evidence that GABA functions as an excitatory as well as an inhibitory neurotransmitter.
ISSN:0028-0836
1476-4687
DOI:10.1038/364337a0